全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

从长度米到时间秒:稳频激光-铯喷泉钟-飞秒光梳-锶光晶格钟

DOI: 10.1360/972011-220, PP. 709-716

Keywords: 计量,时间频率基准,稳频激光,原子喷泉钟,光钟,飞秒光梳

Full-Text   Cite this paper   Add to My Lib

Abstract:

报道了近年来中国计量科学研究院(NIM)在时间频率基准领域的研究进展稳频激光波长实际实现国际单位制(SI)的长度单位米(m);NIM5铯喷泉钟以不确定度2×10-15复现时间单位秒(s);飞秒光学频率梳建立光学频率与微波频率的相干联系,以优于4×10-14的不确定度实现光学波长向标准微波频率的溯源标定;以及正在研制的锶原子光晶格钟,为应对未来修改秒定义做准备.另外,文中还提出飞秒光梳是从动跟踪系统,描述其性能的指标应当是它的跟踪精度;估计了“吸收室-原子束-原子喷泉-原子/离子存储”四种频率参考方案可能达到的不确定度极限.

References

[1]  1 CIPM Recommendation 1 (CI-2002): List of recommended radiations. Metrologia, 2003, 40: 104-115
[2]  7 臧二军, 曹建平, 李成阳, 等. 半非平面单块激光器快速频率调谐的实验研究. 中国激光, 2004, 31: 931-933
[3]  10 Essen L, Parry J. Atomic standard of frequency and time interval. Nature, 1955, 176: 280-284??
[4]  11 Ramsey N. A molecular beam resonance method with separated oscillating fields. Phys Rev, 1950, 78: 695-699??
[5]  12 Chu S, Hollberg L, Bjorkholm J, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. PhysRev Lett, 1985, 55: 48-51??
[6]  13 Zacharias J, Yates G, Haun R. An atomic frequency standard. Proc IRE, 1955, 43: 364-368
[7]  15 Parker T. Long-term comparison of caesium fountain primary frequency standards. Metrologia, 2010, 47: 1-10??
[8]  16 李天初, 李明寿, 林平卫, 等. 新一代时间频率基准: NIM4 铯冷原子喷泉钟. 计量学报, 2004, 25: 193-197
[9]  19 王立吉, 吴长华, 黄秉英, 等. NIM 铯原子喷泉频率基准的设计与初步结果. 计量学报, 2000, 21: 1-5
[10]  27 Hollberg L. Optical frequency standards and measurements. IEEE J Quant Electr, 2001, 37: 1502??
[11]  32 Swallows M, Bishof M, Ye J, et al. Suppression of collisional shifts in a strongly interacting lattice clock. Science, 2011, 311: 1043-1046
[12]  2 17th CGPM. Resolution 1 (CR.97): Definition of the metre (1983). Metrologia, 1984, 20: 25-30
[13]  3 沈乃澄, 吴耀祥, 孙义民, 等. 碘饱和吸收稳定的氦氖激光器. 计量学报, 1980, 1: 93-101
[14]  4 赵克功, 李成阳, 李华, 等. 碘-127 稳频640 nm 氦氖激光器的研究. 计量学报, 1987, 8: 88-95
[15]  5 Liu Z, Qian J, Lin Z, et al. Frequency stabilized 543 nm He-Ne laser. Digest CPEM’98, 1998. 253
[16]  6 李天初, 钱进, 张小平, 等. 1.5 μm 波长DFB 半导体激光乙炔(12C2H2)线性吸收稳频. 计量学报, 2001, 22: 161-163
[17]  8 13th CGPM. Resolution 1 (CR.103): SI unit of time (second). Metrologia, 1968, 4: 41-45
[18]  9 Rabi I, Millman S, Zacharias J, et al. The molecular beam resonance method for measuring nuclear magnetic moments: The magneticmoments of 3Li6, 3Li7 and 9F19. Phys Rev, 1939, 55: 526-535
[19]  14 Clairon A, Laurent P, Santarelli G, et al. A cesium fountain frequency standard: Preliminary results. IEEE Inst Meas, 1995, 44: 128-131??
[20]  17 Li T, Li M, Lin P, et al. Improvements and new evaluation of NIM4 cesium fountain clock in 2005 and construction of NIM5 clock. ChinPhys Lett, 2007, 24: 1177-1179
[21]  18 Li T, Li M, Lin P, et al. The transportable cesium fountain clock NIM5: Its construction and performance. In: Proceedings of the 7th FrequencyStandards and Metrology, 2008. 314-320
[22]  20 Li T, Li M, Lin P, et al. NIM4 cesium atomic fountain primary frequency standard: Performance and evaluation. IEEE UFFC-FCS2004,2004. 431-432
[23]  21 Gao Y, Gao X, Li T, et al. The generation of new TA(NIM), which is steered by NIM5 cesium fountain clock. Metrologia, 2008, 45:34-37
[24]  22 Udem T, Reichert J, Hansch T, et al. Accurate measurement of large frequency differences with a mode-locked laser. Opt Lett, 1999, 24:881-883??
[25]  23 方占军, 王强, 李天初. 飞秒光梳和碘稳频532 nm Nd:YAG 激光频率的测量. 物理学报, 2007, 56: 5684-5690
[26]  24 Holzwart R, Udem T, Hansch T, et al. Optical frequency synthesize for precision spectroscopy. Phys Rev Lett, 2000, 85: 2264-2267??
[27]  25 Ma L, Bi Z, Diddams S, et al. Optical frequency synthesis and comparison with uncertainty at the 10-19 level. Science, 2004, 303:1843-1845??
[28]  26 Ma L, Robertsson L, Zucco M, et al. First international comparison of femtosecond laser combs at the international bureau of weights andmeasures. Opt Lett, 2004, 29: 641-643??
[29]  28 Chou C, Hume D, Rosenband T, et al. Frequency comparison of two high-accuracy Al+ clocks. Phys Rev Lett, 2010, 104: 070802??
[30]  29 Campbell G K, Ludlow A D, Ye J, et al. The absolute frequency of the 87Sr optical clock transition. Metrologia, 2008, 45: 539-548??
[31]  30 Katori H, Ido T, Isoya Y, et al. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys RevLett, 1999, 82: 1116-1120
[32]  31 Tokamoto M, Katori H. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice. Phys Rev Lett, 2003, 91: 223001??
[33]  33 Wang S K, Wang Q, Lin Y G, et al. Cooling and trapping 88Sr atom with 461 nm laser. Chin Phys Lett, 2009, 26: 093202??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133