全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

电晕诱导介质阻挡放电/催化剂协同作用下甲烷的部分氧化水蒸气重整制氢

, PP. 979-984

Keywords: 介质阻挡放电,甲烷转化,电晕诱导,氢气,催化反应

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究大气压较低温度(低于600℃)条件下电晕诱导介质阻挡放电反应器内甲烷的部分氧化水蒸气重整制氢.反应器内电晕诱导颗粒的存在使介质阻挡放电可以在大间隙(10mm)、低电压条件下均匀发生.分析了输入功率、氧气/甲烷摩尔比以及预热温度对甲烷转化率和氢气选择性的影响.实验结果表明输入功率在27~50W之间时输入功率的增加明显促进甲烷转化率升高,但当输入功率大于50W时,功率的增加对甲烷转化的促进作用相对较弱;氧气/甲烷摩尔比既影响甲烷转化率,又影响氢气选择性,在本文实验条件下,氧气/甲烷摩尔比为0.6时,氢气的选择性最高能达到112%;电晕诱导介质阻挡放电和催化剂协同作用下的甲烷转化率接近热力学平衡时的甲烷转化率.

References

[1]  20 Yang Y. Methane conversion and reforming by nonthermal plasma on pins. Ind Eng Chem Res, 2002, 41: 5918-5926??
[2]  21 Matin N S, Savadkoohi H A, Feizabadi S Y. Methane conversion to C2 hydrocarbons using dielectric-barrier discharge reactor: Effects of system variables. Plasma Chem Plasma Process, 2008, 28: 189-202??
[3]  22 Thammanoon S, Piyaphon T, Sumaeth C. Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system. Int J Hydrogen Energy, 2007, 32: 1067-1079??
[4]  23 Raizer Y P. Gas Discharge Physics. Berlin: Springer-Verlag, 1991
[5]  14 Supat K, Chavadej S, Lobban L L, et al. Combined steam reforming and partial oxidation of methane to synthesis gas under electrical discharge. Ind Eng Chem Res, 2003, 42: 1654-1661??
[6]  15 Bang C U, Hong Y C, Cho S C, et al. Methane augmented microwave plasma burner. IEEE Trans Plasma Sci, 2006, 34: 1751-1756??
[7]  16 Nozaki T, Muto N, Kado S, et al. Dissociation of vibrationally excited methane on Ni catalyst Part 1 application to methane steam reforming. Catal Today, 2004, 89: 57-65??
[8]  24 Tang J, Duan Y X, Zhao W. Characterization and mechanism studies of dielectric barrier discharges generated at atmospheric pressure. Appl Phys Lett, 2010, 96: 191503??
[9]  25 Lü J, Li Z H. Conversion of natural gas to C2 hydrocarbons via cold plasma technology. J Nat Gas Chem, 2010, 19: 375-379??
[10]  26 Juurlink L B F, McCabe P R, Smith R R, et al. Eigenstate-resolved studies of gas-surface reactivity: CH4 (ν3) dissociation on Ni(100). Phys Rev Lett, 1999, 83: 868-871??
[11]  1 Cai J L, Wang G C, Li Y C, et al. Enrichment and hydrogen production by marine anaerobic hydrogen-producing microflora. Chinese Sci Bull, 2009, 54: 2656-2661??
[12]  2 Jasinski M, Dors M, Mizeraczyk J. Production of hydrogen via methane reforming using atmospheric pressure microwave plasma. J Power Sources, 2008, 181: 41-45??
[13]  3 Bromberg L, Cohn D R, Rabinovich A, et al. Plasma catalytic reforming of methane. Int J Hydrogen Energy, 1999, 24: 1131-1137??
[14]  4 Indarto A. Hydrogen production from methane in a dielectric barrier discharge using oxide zinc and chromium as catalyst. J Chin Inst Chem Eng, 2008, 39: 23-28
[15]  5 Pietruszka B, Anklam K, Heintze M. Plasma-assisted partial oxidation of methane to synthesis gas in a dielectric barrier discharge. Appl Catal A: Gen, 2004, 261: 19-24??
[16]  6 Hammer T, Kappes T, Baldauf M. Plasma catalytic hybrid processes: Gas discharge initiation and plasma activation of catalytic processes. Catal Today, 2004, 89: 5-14??
[17]  7 Indarto A, Chio J W, Lee H, et al. The kinetic studies of direct methane oxidation to methanol in the plasma process. Chinese Sci Bull, 2008, 53: 2783-2792??
[18]  8 Bromberg L, Cohn D R, Rabinovich A, et al. Emissions reductions using hydrogen from plasmatron fuel converters. Int J Hydrogen Energy, 2001, 26: 1115-1121??
[19]  9 Petitpas G, Rollier J D, Darmon A, et al. A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrogen Energy, 2007, 32: 2848-2867??
[20]  10 Cormier J M, Rusu I. Syngas production via methane steam reforming with oxygen: Plasma reactors versus chemical reactors. J Phys D: Appl Phys, 2001, 34: 2798-2803??
[21]  11 Zheng B, Yan J H, Li X D, et al. Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion. Int J Hydrogen Energy, 2008, 33: 5545-5553??
[22]  12 Horng R F, Huang H H, Lai M P, et al. Characteristics of hydrogen production by a plasma-catalyst hybrid converter with energy saving schemes under atmospheric pressure. Int J Hydrogen Energy, 2008, 33: 3719-3727??
[23]  13 Le H, Lobban L L, Mallinson R G. Some temperature effects on stability and carbon formation in low temperature ac plasma conversion of methane. Catal Today, 2004, 89: 15-20??
[24]  17 Wang B W, Zhang X, Liu Y W, et al. Conversion of CH4, steam and O2 to syngas and hydrocarbons via dielectric barrier discharge. J Nat Gas Chem, 2009, 18: 94-97
[25]  18 Nozaki T, Hiroyuki T, Okazaki K. Hydrogen enrichment of low-calorific fuels using barrier discharge enhanced Ni/Al2O3 bed reactor: Thermal and nonthermal effect of non-equilibrium plasma. Energ Fuel, 2006, 20: 339-345??
[26]  19 Nozaki T, Fukui W, Okazaki K. Reaction enhancement mechanism of the nonthermal discharge and catalyst hybrid reaction for methane reforming. Energ Fuel, 2008, 22: 3600-3604??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133