全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

高湿度环境下衬底表面对牛胰岛素聚集的影响

DOI: 10.1360/972010-1708, PP. 956-961

Keywords: 湿度,表面,牛胰岛素,聚集,原子力显微镜

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用原子力显微镜观察了牛胰岛素(bovineinsulin)在高湿度环境下(相对湿度大于90%)、在4种不同衬底表面上的聚集行为.在高湿度环境下,衬底表面会形成一层纳米级水膜,牛胰岛素分子会在水膜中扩散、迁移、聚集.原子力显微镜观察表明,牛胰岛素在不同衬底表面呈现出形式多样的聚集状态在MICA表面形成排列比较规则的纤维;在APS-MICA表面呈现出较杂乱的聚集状态;在高温热解石墨(HOPG)表面蛋白分子主要吸附在HOPG的台阶上,堆积成高点并沿着台阶呈线状排列;在OTS-MICA表面,部分区域出现团聚,小部分聚集成纤维状.这些结果表明在高湿度条件下,不同衬底表面对牛胰岛素的聚集有很大影响,可以利用不同性质的衬底表面来调制牛胰岛素的聚集.

References

[1]  2 Katsumi M, Chiho H. Interactions of amyloid β-pepitde (1-40) with ganglioside-containing membranes. Biochemistry, 1999, 38: 4137-4142??
[2]  3 Chen Z J, Krause G, Reif B. Structure and orientation of peptide inhibitors bound to beta-amyloid fibrils. J Mol Biol, 2005, 354: 760-776??
[3]  4 Gazit E. Use of biomolecular templates for the fabrication of metal nanowires. FEBS J, 2007, 274: 317-322??
[4]  6 Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300: 625-627??
[5]  7 Scheibel T, Parthasarathy R, Sawicki G, et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci USA, 2003, 10: 4527-4532
[6]  8 Yuan S, Dong Z L, Miao L, et al. Research on the reconstruction of fast and accurate AFM probe model. Chinese Sci Bull, 2010, 55: 2750-2754??
[7]  10 Arora A, Ha C, Park C B. Insulin amyloid fibrillation at above 100℃: New insights into protein folding under extreme temperatures. Protein Sci, 2004, 13: 2429-2436??
[8]  11 Jansen R, Dzwolak W, Winter R. Amyloidgenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy. Biophys J, 2005, 88: 1344-1353??
[9]  12 Jimenez J L, Nettleton E J, Bouchard M, et al. The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci USA, 2002, 99: 9196-9201??
[10]  21 Nayak A, Dutta A K, Belfort G. Surface-enhanced nucleation of insulin amyloid fibrillation. Biochem Biophys Res Commun, 2008, 369: 303-307??
[11]  22 Zhang L, Zhong J, Huang L X, et al. Parallel-oriented fibrogenesis of a β-sheet forming peptide on supported lipid bilayers. J Phys Chem B, 2008, 112: 8950-8954??
[12]  23 Zimmerman S B, Trach S O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol, 1991, 222: 599-620??
[13]  25 White D A, Buell A K, Knowles T P J, et al. Protein aggregation in crowded environments. J Am Chem Soc, 2010, 132: 5170-5175??
[14]  26 Li H, Zhang F, Zhang Y, et al. Peptide diffusion and self-assembly in ambient water nanofilm on mica surface. J Phys Chem B, 2009, 113: 8795-8799??
[15]  29 Losic D, Martin L L, Aguilar M, et al. β-Amyloid fibril formation is promoted by step edges of highly oriented pyrolytic graphite. Biopolymers, 2006, 84: 519-526??
[16]  31 Ewing G E. Ambient thin film water on insulator surfaces. Chem Rev, 2006, 106: 1511-1526??
[17]  32 Karsai A, Murvai U, Soos K, et al. Oriented epitaxial growth of amyloid fibrils of the N27C mutant β25-35 peptide. Eur Biophys J, 2008, 37: 1133-1137??
[18]  33 Karsai A, Grama L, Murvai U, et al. Potassium-dependent oriented growth of amyloid β25-35 fibrils on mica. Nanotechnology, 2007, 18: 1-7
[19]  34 Khurana R, Ionescu-Zanetti C, Pope M, et al. A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy. Biophys J, 2003, 85: 1135-1144??
[20]  1 He Q Y, Mason A B, Woodworth R C, et al. Inequivalence of the two tyrosine ligands in the N-lobe of human serum transferrin. Biochemistry, 1997, 36: 14853-14860??
[21]  5 Hamada D, Yanagihara I, Tsumoto K. Engineering amyloidogenicity towards the development of nanofibrillar materials. Trends Biotech, 2004, 22: 93-97??
[22]  9 张金海, 崔成毅, 周星飞. 单个铁蛋白分子的弹性模量研究. 科学通报, 2009, 54: 345-348
[23]  13 翟彩宁, 贺静, 毛新焕, 等. 金属离子对牛胰岛素淀粉样纤维形成的作用. 四川大学学报, 2008, 45: 1499-1503
[24]  14 Wang C M, Sun J L, Long F, et al. Application of image alignment and time averageing methods in AFM detection for single DNA molecules. Chinese Sci Bull, 2010, 55: 1613-1618??
[25]  15 Zhou X F, Cui C Y, Zhang J H, et al. Nanomechanics of individual amyloid fibrils using atomic force microscopy. Chinese Sci Bull, 2010, 55: 1608-1612
[26]  16 王志刚, 万立俊, 周纯青, 等. β-淀粉样蛋白在石墨表面吸附及凝聚结构的STM 和AFM 研究. 科学通报, 2002, 47: 908-911
[27]  17 Zou D W, Tie Z X, Qin M, et al. Effect of phosphate on the self-assembly of peptide EMK16-II. Chin Phys Lett, 2009, 26: 088103??
[28]  18 Zou D W, Tie Z X, Lu C M, et al. Effects of hydrophobicity and anions on self-assembly of the peptide EMK16-II. Biopolymers, 2010, 93: 318-329
[29]  19 Ha C, Park C B. Template-directed self-assembly and growth of insulin amyloid fibrils. Biotech Bioeng, 2005, 90: 848-855??
[30]  20 Smith M I, Sharp J S, Roberts C J. Nucleation and growth of insulin fibrils in bulk solution and at hydrophobic polystyrene surfaces. Biophys J, 2007, 93: 2143-2151??
[31]  24 Hall D, Dobson C M. Expanding to fill the gap: A possible role for inert biopolymers in regulating the extent of the ‘macromolecular crowding’ effect. FEBS Lett, 2006, 580: 2584-2590??
[32]  27 Dobson C M. Protein folding and misfolding. Nature, 2003, 426: 884-890??
[33]  28 Fandrich M, Fletcher M A, Dobson C M. Amyloid fibrils from muscle myoglobin. Nature, 2001, 410: 165-166??
[34]  30 Ewing G E. Thin film water. J Phys Chem B, 2004, 108: 15953-15961??
[35]  35 Blackley H K L, Sanders G H W, Davies M C, et al. In-situ atomic force microscopy study of β-amyloid fibrillization. J Mol Biol, 2000, 298: 833-840??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133