全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

特异材料与卡西米尔(Casimir)效应

DOI: 10.1360/972011-211, PP. 985-994

Keywords: 卡西米尔力,特异材料,宏观量子现象

Full-Text   Cite this paper   Add to My Lib

Abstract:

对平板结构情况下卡西米尔(Casimir)效应的理论研究进展进行了综述,特别对排斥型卡西米尔力的研究做了较详细的介绍.随着近年来特异材料(metamaterlas)研究与制备技术的快速发展,人们可以通过人工电磁微结构对材料的电磁特性进行控制,从而为获取卡西米尔排斥力以及回复力创造了条件.相关基础研究的成果将在微纳机电系统方面具有广阔的应用.

References

[1]  Bressi1 G, Carugno G, Onofrio R, et al. Measurement of the Casimir force between parallel metallic surfaces. Phys Rev Lett, 2002, 88:041804
[2]  Bordag M, Mohideen U, Mostepanenko V M. New developments in the Casimir effect. Phys Rep, 2001, 353: 1-205
[3]  Buks E, Roukes M L. Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys Rev B, 2001, 63: 033402
[4]  Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Usp, 1968, 10: 509-514
[5]  Milton K A. Semiclassical electron models: Casimir self-stress in dielectric and conducting balls. Ann Phys, 1980, 127: 49-61
[6]  Barash Y S, Ginzburg V L. Some problems in the theory of van der Waals forces. Sov Phys Usp, 1984, 27: 467-491
[7]  Scheel S, Knoll L, Welsch D G. QED commutation relations for inhomogeneous Kramers-Kronig dielectrics. Phys Rev A, 1998, 58:700-706
[8]  Israelachvili J N. Intermolecular and Surface Forces. London: Academic Press, 1992
[9]  Boyer T H. Van der Waals forces and zero-point energy for dielectric and permeable materials. Phys Rev A, 1974, 9: 2078-2084
[10]  Alves D T, Farina C, Tort A C. Spontaneous emission between two parallel plates, one or both infinitely permeable. Phys Rev A, 2000, 61:034102
[11]  da Silva J C, Matos Neto A, Placido H Q, et al. Casimir effect for conducting and permeable plates at finite temperature. Physica A, 2001,292: 411-421
[12]  Kenneth O, Klich I, Mann A, et al. Repulsive Casimir forces. Phys Rev Lett, 2002, 89: 033001
[13]  Munday J N, Capasso F, Parsegian V A. Measured long-range repulsive Casimir-Lifshitz forces. Nature, 2009, 457: 170-173
[14]  Lambrecht1 A, Marachevsky V N. Casimir interaction of dielectric gratings. Phys Rev Lett, 2008, 101: 160403
[15]  Schmidt F M, Diehl H W. Crossover from attractive to repulsive Casimir forces and vice versa. Phys Rev Lett, 2008, 101: 100601
[16]  Schaden M. Dependence of the direction of the Casimir force on the shape of the boundary. Phys Rev Lett, 2009, 102: 060402
[17]  Leonhardt U, Philbin T G. Quantum levitation by left-handed metamaterials. New J Phys, 2007, 9: 254
[18]  Yang Y P, Zeng R, Xu J P, et al. Casimir force between left-handed-material slabs. Phys Rev A, 2008, 77: 015803
[19]  Rosa F S S, Dalvit D A R, Milonni P W. Casimir-Lifshitz theory and metamaterials. Phys Rev Lett, 2008, 100: 183602
[20]  Rosa F S S, Dalvit D A R, Milonni P W. Casimir interactions for anisotropic magnetodielectric metamaterials. Phys Rev A, 2008, 78:032117
[21]  Deng G, Liu Z, Luo J. Attractive-repulsive transition of the Casimir force between anisotropic plates. Phys Rev A, 2008, 78: 062111
[22]  Yang Y P, Zeng R, Chen H, et al. Controlling the Casimir force via the electromagnetic properties of materials. Phys Rev A, 2010, 81:022114
[23]  Zhao R, Zhou J, Koschny T, et al. Repulsive Casimir force in chiral metamaterials. Phys Rev Lett, 2009, 103: 103602
[24]  Yannopapas V, Vitanov N V. First-principles study of Casimir repulsion in metamaterials. Phys Rev Lett, 2009, 103: 120401
[25]  Sambale A, Buhmann S Y, Dung H T, et al. Impact of amplifying media on the Casimir force. Phys Rev A, 2009, 80: 051801(R)
[26]  Grusgin A G, Cortijo A. Tunable Casimir repulsion with three-dimensional topological insulators. Phys Rev Lett, 2011, 106: 020403
[27]  Zeng R, Yang Y P. Tunable polarity of the Casimir force based on the saturated ferrites. Phys Rev A, 2011, 83: 012517
[28]  Canaguier-Durand A, Maia Neto P A, Cavero-Pelaez I, et al. Casimir interaction between plane and spherical metallic surfaces. Phys RevLett, 2009, 102: 230404
[29]  Bao Y, Guérout R, Lussange J, et al. Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivityeffects. Phys Rev Lett, 2010, 105: 250402
[30]  Yampol’skii V A, Savel’ev S, Mayselis Z A, et al. Anomalous temperature dependence of the Casimir force for thin metal films. Phys RevLett, 2008, 101: 096803
[31]  Canaguier-Durand A, Maia Neto P A, Lambrecht A, et al. Thermal Casimir effect in the plane-sphere geometry. Phys Rev Lett, 2010, 104:040403
[32]  Davids P S, Intravaia F, Rosa F S S, et al. Modal approach to Casimir forces in periodic structures. Phys Rev A, 2010, 82: 062111
[33]  Casimir H B G, Polder D. The influence of retardation on the London-van der Waals forces. Phys Rev, 1948, 73: 360-372
[34]  Casimir H B G. On the attraction between two perfectly conducting plates. Proc K Ned Akad Wet, 1948, 51: 793-795
[35]  Scully M O, Zubairy M S. Quatum Optics. Cambridge, UK: Cambridge University Press, 1997. 11
[36]  Lamb W E, Retherford R C. Fine structure of the hydrogen atom by a microwave method. Phys Rev, 1947, 72: 241-243
[37]  Weisskopf V, Wigner E. Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie. Z Physik, 1930, 63: 54-73
[38]  Lamoreaux S K. Demonstration of the Casimir force in the 0[J].6 to 6 μm range. Phys Rev Lett.1997, 78:5-8
[39]  Mohideen U, Anushree R. Precision measurement of the Casimir force from 0[J].1 to 0.9 μm. Phys Rev Lett.1998, 81:4549-4552
[40]  Pendry J B, Holden A J, Stewart W J. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett, 1996, 76: 4773-4776
[41]  Pendry J B, Holden A J, Robbins D, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave TheoryTech, 1999, 47: 2075-2084
[42]  Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett,2000, 84: 4184-4187
[43]  Cheng X C, Fu Q H, Zhao X P. Spatial separation of spectrum inside the tapered metamaterial optical waveguide. Chinese Sci Bull, 2011,56: 209-214
[44]  Ma H F, Chen X, Yang X M, et al. A broadband metamaterial cylindrical lens antenna. Chinese Sci Bull, 2010, 55: 2066-2070
[45]  Zhao Q, Kang L, Du B, et al. Isotropic negative permeability composite based on Mie resonance of the BST-MgO dielectric medium. ChineseSci Bull, 2008, 53: 3272-3276
[46]  London F. Zur theorie und systematik der molekularkr?fte. Z Physik, 1930, 63: 245-279
[47]  Spruch L. Retarded, or Casimir, long-range potentials. Phys Today, 1986, 39: 37-45
[48]  Lifshitz E M. The theory of molecular attraction forces between solid bodies. Sov Phys JETP, 1956, 2: 73-83
[49]  Schwinger J, DeRaaD L L, Milton K A. Casimir effect in dielectrics. Ann Phys, 1978, 115: 1-23
[50]  Kupiszewska D, Mostowski J. Casimir effect for dielectric plates. Phys Rev A, 1990, 41: 4636-4644
[51]  Huttner B, Barnett S M. Dispersion and loss in a hopfield dielectric. Europhys Lett, 1992, 18: 487-492
[52]  Kupiszewska D. Casimir effect in absorbing media. Phys Rev A, 1992, 46: 2286-2294
[53]  Tomas M S. Casimir force in absorbing multilayers. Phys Rev A, 2002, 66: 052103

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133