全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

换热器内随温度变化的黏度对两流体(火积)的影响

DOI: 10.1360/972010-1846, PP. 1934-1939

Keywords: (火积),(火积)损耗,熵产,黏性热效应,换热器

Full-Text   Cite this paper   Add to My Lib

Abstract:

以橄榄油为例来研究黏度固定和黏度为温度函数的情况下黏性热效应对顺流换热器内两流体的影响.当黏度固定值大于黏度为温度函数的平均值时,在相同条件下黏度固定时得到的传热损耗率小于黏度为温度函数时得到的传热损耗率.而当黏度固定值小于黏度为温度函数时的平均值时会得到相反的结论.在黏度为温度函数的情况下,当较小热容流率的流体为热流体时换热器具有较小的无量纲传热损耗率.当冷流体的入口温度增加时,黏度固定条件下无量纲损耗率比黏度为温度函数条件下的无量纲损耗率具有较大的减小幅度.

References

[1]  1 Yilmaz M, Sara O N, Karsli S. Performance evaluation criteria for heat exchangers based on second law analysis. Exergy Int J, 2001, 1:278-294??
[2]  3 Glansdorff P, Prigogine I. Thermodynamic theory of structure, stability and fluctuations. London: Wiley-Interscience, 1971
[3]  4 Bejan A. Entropy Generation Through Heat and Fluid Flow. New York: Wiley, 1982
[4]  7 Bertola V, Cafaro E. A critical analysis of the minimum entropy production theorem and its application to heat and fluid flow. Int J HeatMass Transfer, 2008, 51: 1907-1912??
[5]  10 Guo Z Y, Cheng X G, Xia Z Z. Least dissipation principle of heat transport potential and its application in heat conduction optimization.Chinese Sci Bull, 2003, 48: 406-410.
[6]  13 郭江峰, 程林, 许明田. (火积)耗散数及其应用. 科学通报, 2009, 54: 2998-3002
[7]  14 Chen Q, Wang M, Pan M N, et al. Optimization principles for convective heat transfer. Energy, 2009, 34: 1199-1206??
[8]  15 郭江峰, 许明田, 程林. 换热器设计中的(火积)耗散均匀性原则. 中国科学: 技术科学, 2010, 40: 671-676
[9]  16 Xu M T, Guo J F, Cheng L. The application of entransy dissipation theory in heat convection. Front Energy Power Eng China, 2009, 3:402-405??
[10]  19 谢志辉, 陈林根, 孙丰瑞. 以(火积)耗散最小为目标的空腔构形优化. 中国科学E 辑: 技术科学, 2009, 39: 1949-1957
[11]  22 魏曙寰, 陈林根, 孙丰瑞. 以(火积)耗散最小为目标的电磁体多学科构形优化. 中国科学E 辑: 技术科学, 2009, 39: 1606-1613
[12]  25 Bagalagel S M, Sahin A Z. Design optimization of heat exchangers with high-viscosity fluids. Int J Energy Res, 2002, 26: 867-880??
[13]  28 Sahin A Z. Thermodynamic design optimization of a heat recuperator. Int Commun Heat Mass, 1997, 24: 1029-1038??
[14]  2 Prigogine I. Introduction to Thermodynamics of Irreversible Processes. 3 rd ed. New York: Wiley, 1967
[15]  5 Bejan A. Advanced engineering thermodynamics. New York: Wiley, 1988
[16]  6 Bejan A. Entropy generation minimization. Boca Raton: CRC Press, 1996
[17]  8 Bejan A. Second law analysis in heat transfer. Energy, 1980, 5: 720-732??
[18]  9 Hesselgreaves J E. Rationalisation of second law analysis of heat exchangers. Int J Heat Mass Transfer, 2000, 43: 4189-4204??
[19]  11 Guo Z Y, Zhu H Y, Liang X G. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50:2545-2556??
[20]  12 韩光泽, 过增元. 导热能力损耗的机理及其数学表达. 中国电机工程学报, 2007, 27: 98-102
[21]  17 许明田, 程林, 郭江峰. 火积耗散理论在换热器设计中的应用. 工程热物理学报, 2009, 30: 2090-2092
[22]  18 Guo J F, Xu M T, Cheng L. The application of entransy dissipation theory in optimization design of heat exchanger. In: Proceedings of the14th International Heat Transfer Conference, Washington D. C., USA, 2010
[23]  20 魏曙寰, 陈林根, 孙丰瑞. 基于矩形单元体的以(火积)耗散最小为目标的体点导热构形优化. 中国科学E 辑: 技术科学, 2009, 39: 278-285
[24]  21 Chen Q, Yang K, Wang M, et al. A new approach to analysis and optimization of evaporative cooling system I: Theory. Energy, 2010, 35:2448-2454??
[25]  23 Ou J W, Cheng K C. Viscous dissipation effects on thermal entrance heat transfer in pipe flows with uniform wall heat flux. Appl Sci Res,1973, 28: 289-301
[26]  24 Barletta A, Magyari E. Forced convection with viscous dissipation in the thermal entrance region of a circular duct with prescribed wallheat flux. Int J Heat Mass Transfer, 2007, 50: 26-35??
[27]  26 Sahin A Z. Thermodynamics of laminar viscous flow through a duct subjected to constant heat flux. Energy, 1996, 21: 1179-1187??
[28]  27 郭江峰, 许明田, 程林. 两流体换热器内粘性热对两流体火积的影响. 中国科学: 技术科学, 2011, 41: 621-627
[29]  29 杨世铭, 陶文铨. 传热学. 第3 版. 北京: 高等教育出版社, 1998

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133