2 Jacobs A H, Li H, Winkeler A, et al. PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging, 2003, 30: 1051-1065??
[2]
3 Cherry S R, Chatziioannou A F. Small animal PET systems. In: Wernick M N, Aarsvold J N, eds. Emission Tomography: The Fundamentalsof PET and SPECT. California: Elsevier Academic Press, 2004. 215
[3]
4 Laforest R, Longford D, Siegel S, et al. Performance evaluation of the microPET-FOCUS-F120. IEEE Trans Nucl Sci, 2007, 54: 42-49??
[4]
5 Bao Q, Newport D, Chen M, et al. Performance evaluation of the inveon dedicated PET preclinical tomography based on the NEMA NU-4standards. J Nucl Med, 2009, 50: 401-408??
[5]
6 Huisman M C, Reder S, Weber A W, et al. Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl MedMol Imaging, 2007, 34: 532-540??
[6]
7 Yu A S, Lin H D, Huang S C, et al. Quantification of cerebral glucose metabolic rate in mice using 18F-FDG and small-animal PET. J NuclMed, 2009, 50: 966-973
[7]
8 Takasawa M, Momosaki S, Yamazaki Y, et al. Quantitative assessment of regional glucose metabolism in normal rats using semiconductoranimal PET. J Nucl Med, 2009, 50(Suppl 2): 1518-1522
[8]
9 Toyama H, Ichise M, Liow J-S, et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animalPET. Nucl Med Biol, 2004, 31: 251-256??
[9]
10 Vaska P, Woody C L, Schlyer D J, et al. Initial performance of the RatCAP, a PET camera for conscious rat brain imaging. IEEE Nucl SciSymp Conf, 2005, 5: 3040-3044??
[10]
11 Bradbury M S, Hambardzumyan D, Zanzonico P B, et al. Dynamic small-animal PET imaging of tumor proliferation with 3-Deoxy-3-18Ffluorothymidine in a genetically engineered mouse model of high-grade gliomas. J Nucl Med, 2008, 49: 422-429??
[11]
12 Murayama C, Harada N, Kakiuchi T, et al. Evaluation of D-18F-FMT, 18F-FDG, L-11C-MET, and 18F-FLT for monitoring the response oftumors to radiotherapy in mice. J Nucl Med, 2009, 50: 290-295
[12]
13 Zwagerman N, Sprague S, Davis M D, et al. Pre-ischemic exercise preserves cerebral blood flow during reperfusion in stroke. Neurol Res,2010, 32: 523-529??
[13]
17 Meikle S R, Eberl S, Fulton R R, et al. The influence of tomography sensitivity on kinetic parameter estimation in positron emission tomographyimaging studies of the rat brain. Nucl Med Biol, 2000, 27: 617-625??
[14]
18 Leriche L, Bj?rklund T, Breysse N, et al. Positron emission tomography imaging demonstrates correlation between behavioral recoveryand correction of dopamine neurotransmission after gene therapy. J Neurosci, 2009, 29: 1544-1553??
[15]
19 Czoty P W, Gage H D, Nader M A. Differences in D2 dopamine receptor availability and reaction to novelty in socially housed malemonkeys during abstinence from cocaine. Psychopharmacology, 2010, 208: 585-592??
[16]
20 Cui Y, Takashima T, Takashima-Hirano M, et al. 11C-PK11195 PET for the in vivo evaluation of neuroinflammation in the rat brain aftercortical spreading depression. Eur J Nucl Med, 2009, 50: 1904-1911??
[17]
21 Hewitson L, Lopresti B J, Stott C, et al. Influence of pediatric vaccines on amygdala growth and opioid ligand binding in rhesus macaqueinfants: A pilot study. Acta Neurobiol Exp, 2010, 70: 147-164
[18]
24 Gao Y, Ravert H T, Kuwabara H, et al. Synthesis and biological evaluation of novel carbon-11 labeled pyridyl ethers: Candidate ligandsfor in vivo imaging of a4b2 nicotinic acetylcholine receptors (a4b2-nAChRs) in the brain with positron emission tomography. BioorganMed Chem, 2009, 17: 4367-4377
[19]
26 Liang Q, Gotts J, Satyamurthy N, et al. Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic messageby positron emission tomography, following gene transfer with adenovirus. Mol Ther, 2002, 6: 73-82??
[20]
27 Herschman H R. MicroPET imaging and small animal models of disease. Curr Opin Immunol, 2003, 15: 378-384??
[21]
1 Phelps M E. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA, 2000, 97:9226-9233??
[22]
14 M?rtberg E, Cumming P, Wiklund L, et al. Cerebral metabolic rate of oxygen (CMRO2) in pig brain determined by PET after resuscitationfrom cardiac arrest. Resuscitation, 2009, 80: 701-706??
[23]
15 Kudomi N, Hayashi T, Watabe H, et al. A physiologic model for recirculation water correction in CMRO2 assessment with 15O2 inhalationPET. J Cerebr Blood F Met, 2009, 29: 355-364??
[24]
16 Comar D, Maziere M, Godot J M, et al. Visualisation of 11C-flunitrazepam displacement in the brain of the live baboon. Nature, 1979, 280:320-331
[25]
22 Yakushev I Y, Dupont E, Buchholz H-G, et al. In vivo imaging of dopamine receptors in a model of temporal lobe epilpsy. Epilpsia, 2010,51: 415-422??
[26]
23 Aznavour N, Benkelfat C, Gravel P, et al. MicroPET imaging of 5-HT1A receptors in rat brain: A test-retest [18F]MPPF study. Eur J NuclMed Mol Imaging, 2009, 36: 53-62??
[27]
25 Chatziioannou A F. Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med, 2002, 29: 98-114??
[28]
28 Shu C J, Radu C G, Shelly S M, et al. Quantitative PET reporter gene imaging of CD81+ T cells specific for a melanoma-expressedself-antigen. Int Immunol, 2008, 21: 155-165??
[29]
30 Haberkorn U. PET and SPECT. In: Semmler W, Schwaiger M, eds. Molecular Imaging II. Berlin, Heidelberg: Springer-Verlag BerlinHeidelberg, 2008. 13-35
[30]
29 Zhang H, Zheng X, Yang X, et al. 11C-NMSP/18F-FDG microPET to monitor neural stem cell transplantation in a rat model of traumaticbrain injury. Eur J Nucl Med Mol Imaging, 2008, 35: 1699-1708??
[31]
31 Lendvai G, Estrada S, Bergstr?m M. Radiolabelled oligonucleotides for imaging of gene expression with PET. Curr Med Chem, 2009, 16:4445-4461??
[32]
32 Kao C-M, Dong Y, Chen C-T. Investigating the fundamental significance of high sensitivity for lesion detection in PET imaging. IEEENucl Sci Symp Conf Rec, 2008: 3744-3749
[33]
33 Xie Q, Chen Y, Zhu J, et al. Initial implementation of LYSO-PSPMT block detector with an all digital DAQ system. IEEE Nucl Sci SympConf Rec, 2010: 1759-1762