全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

t比特半经典量子Fourier变换

, PP. 2250-2255

Keywords: 量子Fourier,变换,Shor,量子算法,窗口法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对目前大维数量子寄存器生成的困难性,研究了基于小维数量子寄存器实现大维数量子Fourier变换的方法.首先,定义了t比特半经典量子Fourier变换,从几率幅的角度证明该变换可以实现量子Fourier变换,且所需2位量子门的规模显著降低,并设计了该变换的量子实现线路.然后基于t比特半经典量子Fourier变换,将经典固定窗口法与Shor算法实现方法相融合,重新设计了Shor整数分解量子算法的实现线路,与Parker等人的实现线路相比,计算资源大体相同(所需的基本量子门均为所需量子寄存器的维数前者较后者多t-1维),而实现速度提高了t2倍,t是窗口宽度.

References

[1]  1 Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput, 1997, 26:1484-1509??
[2]  2 Grover L K. A fast quantum mechanics algorithm for database search. In: Proceeding of the 28th ACM Symposium on Theory ofComputation. New York: ACM Press, 1996. 212-219
[3]  8 He Y G, Sun J G. Complete quantum circuit of HAAR wavelet based MRA. Chinese Sci Bull, 2005, 50: 1796-1798??
[4]  9 Cao Y, Peng S G, Zgeng C, et al. Quantum Fourier transform and phase estimation in qudit system. Commun Theor Phys, 2011, 55:790-794??
[5]  10 Wang X, Bao W S, Fu X Q. A quantum algorithm for searching a target solution of fixed weight. Chinese Sci Bull, 2011, 56: 484-488??
[6]  12 Lieven M K V, Matthias S, Gregory B, et al. Experimental realization of Shor's quantum factorization algorithm using nuclear magneticresonance. Nature, 2001, 414: 883-887??
[7]  15 Zalka C. Fast versions of Shor's quantum factoring algorithm. Arxiv: quant-ph/9806084v1, 1998
[8]  17 Griffiths R B, Niu C S. Semiclassical Fourier transform for quantum computation. Phys Rev Lett, 1996,76: 3228-3232??
[9]  18 Parker S, Plenio M B. Efficient factorization with a single pure qubit and logN mixed qubits. Phys Rev Lett, 2000, 85: 3048-3052
[10]  19 Fu X Q, Bao W S, Zhou C. Speeding up implementation for Shor's factorization quantum algorithm. Chinese Sci Bull, 2010, 55:3648-3653??
[11]  20 Kenji K, Yukio T. Speeding up elliptic cryptosystems using a signed binary window method. In: Proceeding of the 12th AnnualInternational Cryptology Conference on Advances in Cryptology. Berlin: Springer-Verlag, 1993. 345-357
[12]  3 Long G L, Xiao L. Parallel quantum computing in a single ensemble quantum computer. Phys Rev A, 2004, 69: 052303??
[13]  4 Zhong P C, Bao W S. Quantum mechanical meet-in-the-middle search algorithm for triple-DES. Chinese Sci Bull, 2010, 55: 321-325??
[14]  5 Gao F, Guo F Z, Wen Q Y, et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. SciChina Ser G-Phys Mech Astron, 2008, 51: 559-566??
[15]  6 Chen W, Han Z F, Mo X F, et al. Active phase compensation of quantum key distribution system. Chinese Sci Bull, 2008, 53: 1310-1314??
[16]  7 Fang X M, Zhu X W, Hong M, et al. Realization of quantum discrete Fourier transform with NMR. Chinese Sci Bull, 2000, 45:1071-1075??
[17]  11 Zhou C, Bao W S, Fu X Q. Decoy-state quantum key distribution for the heralded pair coherent state photon source with intensityfluctuations. Sci China Infor Sci, 2010, 53: 2485-2494??
[18]  13 Vedral V, Barenco A, Ekert A. Quantum networks for elementary arithemetic operations. Phys Rev A, 1996, 54: 147-153??
[19]  14 Beckman D, Chari A N, Devabhaktuni S, et al. Efficient networks for quantum factoring. Phys Rev A, 1996, 54: 1034-1063??
[20]  16 Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. London: Cambridge University Press, 2000

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133