全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

磁性氧化铁纳米颗粒的生物相容性研究进展

DOI: 10.1360/972010-2264, PP. 2223-2228

Keywords: 磁性氧化铁纳米颗粒,生物相容性,RT-PCR,胞质分裂阻滞微核试验

Full-Text   Cite this paper   Add to My Lib

Abstract:

磁性氧化铁纳米颗粒的生物相容性是其应用于临床研究的前提之一.生物相容性一般是指材料与宿主之间的相容性,包括组织相容性和血液相容性.目前认为,对生物材料的生物相容性研究与评价应从整体、细胞和分子这3个水平全方位进行.本文主要将近期通过细胞、分子和整体水平相关试验进行的磁性氧化铁纳米颗粒生物相容性评价工作的进展及其研究中存在的问题作一综述.

References

[1]  2 Evanochko W T, Ng T C, Glickson J D. Application of in vivo NMR spectroscopy to cancer. Magn Reson Med, 1984, 1: 508-534??
[2]  5 杨芳, 李熠鑫, 陈忠平, 等. 超声、磁共振多功能微气泡造影剂的制备和应用. 科学通报, 2009, 54: 1181-1186
[3]  8 Lewin M, Carlesso N, Tung C H, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitorcells. Nat Biotechnol, 2000, 18: 410-414??
[4]  9 杨晓芳, 奚廷斐. 生物材料生物相容性评价研究进展. 生物医学工程学杂志, 2001, 18: 123-128
[5]  10 ISO 10993-1: 1992. Biological evaluation of medical devices—Part 1: Evaluation and testing
[6]  11 Holgate S T. Exposure, uptake, distribution and toxicity of nanomaterials in humans. J Biomed Nanotechnol, 2010, 6: 1-19??
[7]  12 Jain T K, Richey J, Strand I, et al. Magnetic nanoparticles with dual functional properties drug delivery and magnetic resonance imaging.Biomaterials, 2008, 29: 4012-4021??
[8]  20 Barrett D G, Yousaf M N. Design and applications of biodegradable polyester tissue scaffolds based on endogenous monomers found inhuman metabolism. Molecules, 2009, 14: 4022-4050??
[9]  22 Prijic S, Scancar J, Romih R, et al. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignantcells by an external magnetic field. J Membr Biol, 2010, 236: 167-179??
[10]  23 Kekkonen V, Lafreniere N, Ebara M. Synthesis and characterization of biocompatible magnetic glyconanoparticles. J Magn Magn Mater,2009, 321: 1393-1396??
[11]  25 Mahmoudi M, Shokrgozar M A, Simchi A, et al. Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated withpoly (vinyl alcohol). J Phys Chem C, 2009, 113: 2322-2331??
[12]  26 Mahmoudi M, Simchi A, Imani M, et al. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxidenanoparticles. Colloids Surf B, 2010, 75: 300-309??
[13]  27 Arbab A S, Bashaw L A, Miller B R, et al. Characterization of biophysical and metabolic properties of cells labeled withsuperparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Rdiology, 2003, 229: 838-846
[14]  28 Arbab A S, Wilson L B, Ashari B, et al. A model of lysosomal metabolism of dextran coated superpara-magnetic iron oxide (SPIO)nanoparticles: Implications for cellular magnetic resonance imaging. NMR Biomed, 2005, 18: 383-389??
[15]  29 Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel. Science, 2006, 311: 622-627??
[16]  30 Hou C H, Chen C W, Hou S M, et al. The fabrication and characterization of dicalcium phosphate dihydrate-modified magneticnanoparticles and their performance in hyperthermia processes in vitro. Biomaterials, 2009, 30: 4700-4707??
[17]  34 Chen H Y, Hsiao J K, Wang J L, et al. Immunological impact of magnetic nanoparticles (Ferucarbotran) on murine peritonealmacrophages. J Nanopart Res, 2010, 12: 151-160??
[18]  35 Pfaller T, Renato C, Inge N, et al. The suitability of different cellular in vitro immunotoxicity and genotoxicity methods for the analysis ofnanoparticle-induced events. Nanotoxicology, 2010, 4: 52-72??
[19]  36 Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc, 2007, 2: 1084-1104??
[20]  37 Springer T A. Adhesion receptors of the immune system. Nature, 1990, 346: 425-434??
[21]  38 Risinger G M Jr, Hunt T S, Updike D L, et al. Matrix metalloproteinase-2 expression by vascular smooth muscle cells is mediated by bothstimulatory and inhibitory signals in response to growth factors. J Biol Chem, 2006, 281: 25915-25925??
[22]  41 Nel A E, Madler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater, 2009, 8:543-557??
[23]  43 Sun C, Du K, Fang C, et al. PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: Theirphysicochemical properties and function in vivo. ACS Nano, 2010, 4: 2402-2410??
[24]  1 Widder K J, Senyei A E, Ranney D F. In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres.Cancer Res, 1980, 40: 3512-3517
[25]  3 Harisinghani M G, Barentsz J, Hahn P F, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. NEngl J Med, 2003, 348: 2491-2499??
[26]  4 武新英, 张景峰, 林冰影, 等. RGD 标记纳米氧化铁的肿瘤血管生成分子影像学研究. 科学通报, 2010, 55: 1891-1899
[27]  6 Baselt D R, Lee G U, Natesan M, et al. A biosensor based on magnetoresistance technology. Biosens Bioelectron, 1998, 13: 731-739??
[28]  7 Gu H W, Xu K M, Xu C J, et al. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun,2006, 941-949
[29]  13 郑元青, 童春义, 王贝, 等. 叶酸-磁性淀粉纳米颗粒的研制及其肿瘤靶向磁热疗效应分析. 科学通报, 2009, 54: 2065-2070
[30]  14 颜士岩, 张东生, 顾宁, 等. 肿瘤热疗用F2O3 纳米磁性颗粒的生物相容性研究. 东南大学学报(医学版), 2005, 24: 8-12
[31]  15 Sadeghiani N, Barbosa L S, Silva L P. Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surfacecoated with polyaspartic acid. J Magn Magn Mater, 2005, 289: 466-468??
[32]  16 Chou L S, Firth J D, Uitto V J, et al. Substratum surface topography alters cell shape and regulates fibroectin mRNA level, mRNAstability, secretion and assembly in human fibroblasis. J Cell Sci, 1995, 108: 1563-1573
[33]  17 Shi X, Wang Y, Varshney R R, et al. In-vitro osteogenesis of synovium stem cells induced by controlled release of bisphosphate additivesfrom microspherical mesoporous silica composite. Biomaterials, 2009, 30: 3996-4005??
[34]  18 Denise N, Johnson L, Kimberly P, et al. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagicvacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol, 2010, 248: 249-258??
[35]  19 Dilnawaz F, Singh A, Mohanty C, et al. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.Biomaterials, 2010, 31: 3694-3706??
[36]  21 Brunner T J, Wick P, Manser P, et al. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particlesolubility. Environ Sci Technol, 2006, 40: 4374-4381??
[37]  24 Aqil A, Vasseur S, Duguet E, et al. PEO coated magnetic nanoparticles for biomedical application. Eur Polym J, 2008, 44: 3191-3199??
[38]  31 Díaz B, Sánchez-Espinel C, Arruebo M, et al. Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles andnanoparticle aggregates. Small, 2008, 11: 2025-2034
[39]  32 Chen A Z, Kang Y Q, Pu X M, et al. Development of Fe3O4-poly(L-lactide) magnetic microparticles in supercritical CO2. J ColloidInterface Sci, 2009, 330: 317-322
[40]  33 Chou L S, Firth J D, Nathanson D, et al. Effect of titanium on transcriptional and post-transcriptional regulation of fibronectin in huamnfibroblasts. J Biomed Mater Res, 1996, 31: 209-217??
[41]  39 Chen Y C, Hsiao J K, Liu H M, et al. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenicdifferentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol, 2010, 245: 272-279??
[42]  40 Huang D M, Hsiao J K, Chen Y C, et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxidenanoparticles. Biomaterials, 2009, 30: 3645-3651??
[43]  42 Park E J, Kim H, Kim Y, et al. Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice.Toxicology, 2010, 275: 65-71??
[44]  44 Wang S B, Xu F H, He H S, et al. Novel alginate-poly(L-Histidine) microcapsules as drug carriers: In vitro protein release and short-termstability. Macromol Biosci, 2005, 5: 408-414??
[45]  45 Chen A Z, Li Y, Chau F T, et al. Microencapsulation of puerarin nanoparticles by poly(L-lactide) in a supercritical CO2 process. ActaBiomater, 2009, 5: 2913-2919
[46]  46 Chen A Z, Li Y, Chen D, et al. Development of core-shell microcapsules by a novel supercritical CO2 process. J Mater Sci Mater Med,2009, 20: 751-758??
[47]  47 Chen A Z, Li Y, Chau F T, et al. Application of organic nonsolvent in the process of solution-enhanced dispersion by supercritical CO2 toprepare puerarin fine particles. J Supercrit Fluids, 2009, 49: 394-402??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133