全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

土壤碳酸盐是一个重要的大气CO2汇吗?

, PP. 2209-2211

Keywords: 土壤碳酸盐,碳酸盐风化(碳酸盐溶解-再沉积),硅酸盐风化,大气CO2,

Full-Text   Cite this paper   Add to My Lib

Abstract:

风化碳汇概念被提出至今已有18年(Berner,1992).而今,我们可以用最新的数据对其地质含义进行重新评估.近来,Ryskov等人以碳同位素的分析数据为基础认为在过去5000年干旱时期的成土过程中,俄罗斯的土壤以土壤碳酸盐的形式将大气中的CO2固定下来,其中黑钙土的固碳速率为2.2kgCm-2a-1、深栗钙土为1.13kgCm-2a-1、浅栗钙土为0.86kgCm-2a-1.然而,他们对数据的解释却是间接而缺乏说服力的,因此,其观点很可能误导读者.Dart等人则持有相反的观点,他们的研究表明,澳大利亚风化层碳酸盐形成并没有吸收任何额外的CO2,而仅是在库与库之间进行简单迁移的结果.本文从以下两个问题对上述观点及其解释进行评述(1)土壤碳酸盐的成因硅酸盐风化和碳酸盐风化的比较;(2)用碳同位素示踪土壤碳酸盐来源存在的问题.得出的结论是土壤碳酸盐可能根本不是一个重要的大气CO2汇,也即是说,碳酸盐风化成因的土壤碳酸盐没有吸收任何额外的CO2;另一方面,由于硅酸盐风化过程相当缓慢,其形成的土壤碳酸盐在短时间尺度内对大气CO2汇的能力很弱.

References

[1]  3 Ryskov Ya G, Demkin V A, Oleynik S A, et al. Dynamics of pedogenic carbonate for the last 5000 years and its role as a buffer reservoir foratmospheric carbon dioxide in soils of Russia. Global Planet Change, 2008, 61: 63-69??
[2]  4 Dart R C, Barovich K M, Chittleborough D J, et al. Calcium in regolith carbonates of central and southern Australia: Its source and implicationsfor the global carbon cycle. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 249: 322-334??
[3]  5 Capo R C, Chadwick O A. Sources of strontium and calcium in desert soil and calcrete. Earth Planet Sci Lett, 1999, 170: 61-72??
[4]  6 Berner R A. Weathering, plants and the long-term carbon cycle. Geochim Cosmochim Acta, 1992, 56: 3225-3231??
[5]  8 Salomons W, Mook W G. Isotope geochemistry of carbonate dissolution and re-precipitation in soils. Soil Sci, 1976, 122: 15-24??
[6]  10 Hamidi E M, Colin F, Michard A, et al. Isotopic tracers of the origin of Ca in a carbonate crust from the Middle Atlas, Morocco. Chem Geol,2001, 176: 93-104??
[7]  12 Dreybrodt W. Processes in Karst Systems-Physics, Chemistry, and Geology. Heidelberg: Springer, 1988
[8]  13 Liu Z, Svensson U, Dreybrodt W, et al. Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: Field measurementsand theoretical prediction of deposition rates. Geochim Cosmochim Acta, 1995, 59: 3087-3097??
[9]  15 刘再华, Wolfgang D, 王海静. 一种由全球水循环产生的可能重要的CO2 汇. 科学通报, 2007, 52: 2418-2422
[10]  21 Hilley G E, Chamberlain C P, Moon S, et al. Competition between erosion and reaction kinetics in controlling silicate-weathering rates. EarthPlanet Sci Lett, 2010, 293: 191-199??
[11]  1 Eswaran H, Reich P F, Kimble J M, et al. Global carbon stocks. In: Lal R, Kimble J M, Eswaran H, et al, eds. Global Climate Change andPedogenic Carbonates. Boca Raton: Lewis Publishers, 1999. 15-25
[12]  2 Schlesinger W H. Biochemistry: An Analysis of Global Change. 2nd ed. New York: Academic Press, 1997
[13]  7 Salomons W, Goudie A, Mook W G. Isotopic composition of calcrete deposits from Europe, Africa and India. Earth Surface Proc Landforms,1978, 3: 43-57
[14]  9 Chiquet A, Michard A, Nahon D, et al. Atmospheric input vs. in situ weathering in the genesis of calcretes: An Sr isotope study at Galvez(Central Spain). Geochim Cosmochim Acta, 1999, 63: 311-323??
[15]  11 Van der Hoven S J, Quade J. Tracing spatial and temporal variations in the sources of calcium in pedogenic carbonates in a semiarid environment.Geoderma, 2002, 108: 259-276??
[16]  14 Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: The role of the diffusionboundary layer and the slow reaction H2O+CO2?H++HCO3-. Geochim Cosmochim Acta, 1997, 61: 2879-2889??
[17]  16 Liu Z, Sun H, Lu B, et al. Wet-dry seasonal variations of hydrochemistry and carbonate precipitation rates in a travertine-depositing canal atBaishuitai, Yunnan, SW China: Implications for the formation of biannual laminae in travertine and for climatic reconstruction. Chem Geol,2010, 273: 258-266??
[18]  17 White A F, Brantley S L. Chemical Weathering Rates of Silicate Minerals: Reviews in Mineralogy. Washington D C: Mineralogical Societyof America, 1995
[19]  18 White A F, Blum A E, Schulz M S, et al. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogicaland surface area changes and calculation of primary silicate reaction rates. Geochim Cosmochim Acta, 1996, 60: 2533-2550??
[20]  19 White A F, Bullen T D, Schulz M S, et al. Differential rates of feldspar weathering in granitic regoliths. Geochim Cosmochim Acta, 2001, 65:847-869??
[21]  20 Berg A, Banwart S A. Carbon dioxide mediated dissolution of Ca-feldspar: Implications for silicate weathering. Chem Geol, 2000, 163:25-42??
[22]  22 Deines P, Langmuir D, Harmon R S. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate waters. GeochimCosmochim Acta, 1974, 38: 1147-1164??
[23]  23 Cerling T E. The stable isotopic composition of modern soil carbonate and its relation to climate. Earth Planet Sci Lett, 1984, 71: 229-240??
[24]  24 Quade J, Chivas A R, McCulloch M T. Strontium and carbon isotope tracers and the origins of soil carbonate in South Australia and Victoria.Palaeogeogr Palaeoclimatol Palaeoecol, 1995, 113: 103-117??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133