全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

湿热山地丘陵流域化学风化过程的碳汇估算

, PP. 2188-2197

Keywords: 化学风化,化学径流,生物地球化学循环,碳汇,湿热山地丘陵

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过对地表化学径流组成的分析,应用化学物质平衡法和扣除法对增江流域化学风化过程产生的大气CO2吸收通量进行估算.结果表明在碳酸盐岩地层不纯且分布面积较少的增江流域,径流溶解质主要由HCO3-,Ca2+,Na+和溶解性Si组成;硅酸盐矿物的化学风化过程是增江河流溶解质的主要来源,其次是碳酸盐矿物化学风化过程的贡献.大气CO2是增江流域岩石化学风化的主要侵蚀介质.增江流域岩石化学风化过程对大气CO2的吸收通量是(3.50~3.81)×105molkm-2a-1,仅比热带-亚热带玄武岩和碳酸盐岩流域低,高于温带-寒温带流域化学风化过程对CO2的吸收通量.受湿润季风环流影响的北半球中低纬度带地表化学风化过程构成全球生物地球化学循环的一个重要碳汇.

References

[1]  7 姚政权, 肖国桥, 梁美艳. 华北平原BZ2 钻孔沉积物的常量元素地球化学组成与化学风化. 科学通报, 2009, 54: 3400-3403
[2]  9 刘再华, Dreybrodt W, 王海静. 一种由全球水循环产生的可能重要的CO2 汇. 科学通报, 2009, 52: 2418-2422
[3]  12 高全洲, 陶贞. 华南滨海花岗岩丘陵的化学风化与化学径流. 中国科学: 地球科学, 2010, 40: 758-767
[4]  13 Wu W H, Xu S J, Yang J D, et al. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in theQinghai-Tibet Plateau. Chem Geol, 2008, 249: 307-320??
[5]  14 Wu L L, Huh Y, Qin J H, et al. Chemical weathering in the Upper Huanghe (Yellow River) draining the eastern Qinghai-Tibet Plateau.Geochim Cosmochim Acta, 2005, 69: 5279-5294??
[6]  16 Jiang Z C, Yuan D X. CO2 source-sink in karst processes in karst areas of China. Episodes, 1999, 22: 33-35
[7]  17 Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci, 1987, 287: 401-428??
[8]  18 Dalai T K, Krishnaswami S, Sarin M M. Major ion chemistry in the headwaters of the Yamuna river system: Chemical weathering, itstemperature dependence and CO2 consumption in the Himalaya. Geochim Cosmochim Acta, 2002, 66: 3397-3416
[9]  19 Huh Y S, Tsoi M Y, Zaitsev A, et al. The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining thesedimentary platform of the Siberian Craton. Geochim Cosmochim Acta, 1998, 62: 1657-1676??
[10]  21 Goldsmith S T, Carey A E, Lyons W B, et al. Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle,Choshui River, Taiwan. Geology, 2008, 36: 483-486??
[11]  25 White A F, Bullen T D, Vivit D V, et al. The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochim CosmochimActa, 1999, 63: 1939-1953??
[12]  26 Mortatti J, Probst J L. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry:Seasonal and spatial variations. Chem Geol, 2003, 197: 177-196??
[13]  27 Edmond J M, Huh Y S. Chemical weathering yields from basement and orogenic terrains in hot and cold climates. In: Ruddiman W F, ed.Tectonic Uplift and Climate Change. New York: Plenum Press, 1997. 329-351
[14]  29 Li S L, Calmels D, Han G, et al. Sulfuric acid as an agent of carbonate weathering constrained by δ3CDIC: Examples from Southwest China.Earth Planet Sci Lett, 2008, 270: 189-199??
[15]  30 Rad S, Louvat P, Gorge C, et al. River dissolved and solid loads in the Lesser Antilles: New insight into basalt weathering processes. JGeochem Explor, 2006, 88: 308-312??
[16]  31 Xu Z F, Liu C Q. Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau, Southwest China.Chem Geol, 2007, 239: 83-95??
[17]  32 Vuai S A H, Tokuyama A. Solute generation and CO2 consumption during silicate weathering under subtropical, humid climate, northernOkinawa Island, Japan. Chem Geol, 2007, 236: 199-216??
[18]  33 Singh S K, Sarin M M, France-Lanord C. Chemical erosion in the eastern Himalaya: Major ion composition of the Brahmaputra and δ3Cof dissolved inorganic carbon. Geochim Cosmochim Acta, 2005, 69: 3573-3588??
[19]  34 Edmond J M, Palmer M R, Measures C I, et al. The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia,and Brazil. Geochim Cosmochim Acta, 1995, 59: 3301-3325??
[20]  35 Moon S, Huh Y, Qin J, et al. Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their controlling factors.Geochim Cosmochim Acta, 2007, 71: 1411-1430??
[21]  36 Huh Y S, Edmond J M. The fluvial geochemistry of the rivers of Eastern Siberia: III. Tributaries of the Lena and Anabar draining thebasement terrain of the Siberian Craton and the Trans-Baikal Highlands. Geochim Cosmochim Acta, 1999, 63: 967-987??
[22]  37 Millot R, Gaillardet J, Dupre B, et al. Northern latitude chemical weathering rates: Clues from the Mackenzie River Basin, Canada. GeochimCosmochim Acta, 2003, 67: 1305-1329??
[23]  1 Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the last 100 million years. Am J Sci, 1983, 205: 641-683
[24]  2 Bergman N M, Lenton T M, Watson A J. COPSE: A new model of biogeochemical cycling over Phanerozoic time. Am J Sci, 2004, 304:397-437??
[25]  3 Dessert C, Dupre B, Gaillardet J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol,2003, 202: 257-273??
[26]  4 West A J, Galy A, Bickle M. Tectonic and climatic controls on silicate weathering. Earth Planet Sci Lett, 2006, 235: 211-228
[27]  5 Hartmann J, Jansen N, Dürr H H, et al. Global CO2-consumption by chemical weathering: What is the contribution of highly activeweathering regions? Glob Planet Change, 2009, 69: 185-194
[28]  6 Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate. Nature, 1992, 359: 117-122??
[29]  8 Schindler D W. Carbon cycling—The mysterious missing sink. Nature 1999, 398: 105
[30]  10 Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers.Chem Geol, 1999, 159: 3-30??
[31]  11 Gao Q Z, Tao Z, Huang X K, et al. Chemical weathering and CO2 consumption in the Xijiang River basin, South China. Geomorphology,2009, 106: 324-332??
[32]  15 Liu Z H, Dreybrodt W, Wang H J. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combinedaction of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Sci Rev, 2010, 99:162-172??
[33]  20 Meybeck M. Concentrations des eaux fluviales en éléments majeurs et apports en solution aux océans. Rev Géol Dyn Géogr Phys, 1979,21: 215-246
[34]  22 Amiotte-Suchet P A, Probst J L. Modelling of atmospheric CO2 consumption by chemical weathering of rocks: Application to theGaronne, Congo and Amazon basins. Chem Geol, 1993, 107: 205-210??
[35]  23 Blum J D, Gazis C A, Jacobson A D, et al. Carbonate versus silicate weathering in the Raikhot watershed within the high Himalayancrystalline series. Geology, 1998, 26: 411-414??
[36]  24 White A F, Schulz M S, Lowenstern J B, et al. The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering,solute evolution, and petrogenesis. Geochim Cosmochim Acta, 2005, 69: 1455-1471??
[37]  28 Lerman A, Ray B M, Clauer N. Radioactive production and diffusional loss of radiogenic Ar-40 in clays in relation to its flux to the atmosphere.Chem Geol, 2007, 243: 205-224??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133