全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义

, PP. 2413-2423

Keywords: 超慢速扩张洋中脊,西南印度洋脊,49°39′E,热液活动区,硫化物烟囱体

Full-Text   Cite this paper   Add to My Lib

Abstract:

2007年1~3月中国大洋19航次首次在超慢速扩张的西南印度洋脊(SWIR)49°39′E发现了活动的海底热液区,这是世界上在超慢速扩张洋中脊发现的第一个活动热液区.本文对获取的硫化物烟囱体样品进行了矿物组构特征、主微量及稀土元素分析.结果表明(1)烟囱体内部以黄铜矿为主,含少量黄铁矿和闪锌矿;中部以黄铁矿为主,含有少量闪锌矿和黄铜矿;外部以黄铁矿和闪锌矿为主,黄铜矿量较少.从烟囱体内部到外部,矿物晶粒变小,晶形变差,矿物间孔隙逐渐发育,与东太平洋海隆和大西洋中脊等其他洋中脊硫化物烟囱体的矿物组成和特点类似;(2)研究区硫化物烟囱体Cu,Fe,Zn的平均含量分别为2.83%,45.6%,3.28%;Au和Ag的平均含量分别为2.0和70.2ppm,同其他洋中脊硫化物的元素含量相比较富集;(3)研究区的硫化物烟囱体REE具有轻稀土富集、重稀土亏损的配分特点,多数样品呈现负Eu异常,与典型无沉积物覆盖大洋中脊硫化物不同,可能与该区特殊的成矿环境或者热液流体组成特征有关.

References

[1]  4 Chen Y J, Morgan J P. The effect of magma emplacement geometry, spreading rate, and crustal thickness on hydrothermal heat flux atmid-ocean ridge axes. J Geol Res, 1996, 101: 475-482
[2]  5 Chen Y J, Lin J. Mechanisms for the formation of ridge-axis topography at slow-spreading ridges: A lithospheric-plate flexural model.Geophys J Int, 1999, 136: 8-18??
[3]  11 German C R, Baker E T, Mevel C, et al. Hydrothermal activity along the southwest Indian ridge, Nature, 1998, 395: 490-493??
[4]  13 Münch U, Lalou C, Halbach P, et al. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E -mineralogy, chemistry and chronology of sulfide samples. Chem Geol, 2001, 177: 341-349??
[5]  14 Banerjee R, Dick J B H, Wolfgang B, et al. Discovery of peridotite-hosted hydrothermal deposits along the ultraslow-spreading SouthwestIndian Ridge. Geological Society of America Annual Meeting, Boston: GSA, 2001
[6]  15 Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge. Nature, 2003, 426: 405-412??
[7]  20 Cannat M, Sauter D, Bezos A, et al. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest IndianRidge. Geochem Geophys Geosyst, 2008, 9: Q04002??
[8]  22 Meyzen C M, Blichert-Toft J, Ludden J N, et al. Isotopic portrayal of the Earth’s upper mantle flow field. Nature, 2007, 447: 1069-1074??
[9]  23 Münch U, Blum N, Halbach P. Mineralogical and geochemical features of sulfide chimneys from the MESO zone, Central Indian Ridge.Chem Geol, 1999, 155: 29-44??
[10]  24 Haymon R M. Growth history of hydrothermal black smoker chimneys. Nature, 1983, 301: 695-698??
[11]  25 Janecky D R, Seyfried W E. Formation of massive sulfide deposits on oceanic ridge crest: Incremental reaction models for mixing betweenhydrothermal solutions and seawater. Geochim Cosmochim Acta, 1984, 48: 2723-2738??
[12]  26 Tivey M K, Humphris S E, Thompson G, et al. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal moundusing mineralogical and geochemical data. J Geophys Res, 1995, 100: 12527-12555??
[13]  27 Rona P A, Klinkhammer G, Nelsen T A, et al. Black smokers, massive sulfides and vent biota at the mid-ocean ridge. Nature, 1986, 321:33-37??
[14]  28 Graham U M, Bluth G L, Ohmoto H. Sulfide-sulfate chimneys on the East-Pacific Rise, 11°N and 13°N latitudes: PartⅠ. Mineralogy andparagenesis. Can Mineral, 1988, 26: 487-504
[15]  29 Marchig V, Blum N, Roonwal G. Massive sulfide chimneys from the East pacific Rise at 7°24'S and 16°34'S. Mar Georesour Geotec, 1997,15: 49-66??
[16]  30 Bogdanov Y, Gurich E, Kuptsov V, et al. Relict sulfide mounds at the TAG hydrothermal field of the Mid-Atlantic Ridge (26°N, 45°W).Oceanology, 1995, 34: 534-542
[17]  35 Allen D E, Seyfried W E. REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperatureand pressure. Geochim Cosmochim Acta, 2005, 69: 675-683??
[18]  36 Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. GeochimCosmochim Acta, 1999, 63: 627-643??
[19]  39 Bach W, Roberts S, Vanko D A, et al. Controls of fluid chemistry and complexation contents of anhydrite from the Pacmanus subseafloorhydrothermal system, Manus Basin, Papua New Guinea. Mineral Depos, 2003, 38: 916-935??
[20]  1 Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galápagos Rift. Science, 1979, 203: 1073-1083??
[21]  2 Baker E T, German C R. On the global distribution of hydrothermal vent fields. In: German C R, Lin J, Parson L M, eds. Mid-OceanRidges: Hydrothermal Interactions Between the Lithosphere and Oceans. Geophysical Monograph, Washington DC: AGU, 2004. 245-266
[22]  3 Banerjee R, Ray D. Metallogenesis along the Indian Ocean Ridge system. Curr Sci, 2003, 85: 321-327
[23]  6 Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the SouthwestIndian Ridge: Effects of transform offsets. Earth Planet Sci Lett, 2001, 187: 283-300??
[24]  7 Muller M R, Minshull T A, White R S. Segmentation and melt supply at the Southwest Indian Ridge. Geology, 1999, 27: 867-870??
[25]  8 Sauter D, Patriat P, Rommevaux-Jestin C, et al. The Southwest Indian Ridge between 49°15′E and 57°E: Focused accretion and magmaredistribution. Earth Planet Sci Lett, 2001, 192: 303-317??
[26]  9 Georgen J E, Kurz M D, Henry J B, et al. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24°E). EarthPlanet Sci Lett, 2003, 206: 509-528??
[27]  10 Baker E T, Edmonds H N, Michael P J, et al. Hydrothermal venting in magma deserts: The ultraslow spreading Gakkel and Southwest IndianRidges. Geochem Geophys Geosyst, 2004, 5: 1-24
[28]  12 Bach W, Banerjee N R, Dick H J B, et al. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading SouthwestIndian Ridge 10°-16°E. Geochem Geophys Geosyst, 2002, 3: 1044??
[29]  16 Font L, Murton B J, Roberts S, et al. Variations in melt productivity and melting conditions along SWIR(70°E-49°E): Evidence from olivine-hosted and plagioclase-hosted melt inclusions. J Petrol, 2007, 48: 1471-1494??
[30]  17 Cannat M, Sauter D, Mendel V, et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 2006, 34: 605-608??
[31]  18 Sauter D, Carton H, Meyzen C, et al. Ridge segmentation and the magnetic structure of the Southwest Indian Ridge (at 50°300′E,55°300′E and 66°200′E): Implications for magmatic processes at ultraslow-spreading centers. Geochem Geophys Geosyst, 2004, 5:Q05K08
[32]  19 Sauter D, Mendel V, Rommevaux-Jestin C, et al. Focused magmatism versus amagmatic spreading along the ultra-slow spreading SouthwestIndian Ridge: Evidence from TOBI side scan sonar imagery. Geochem Geophys Geosyst, 2004, 5: Q10K09
[33]  21 Sauter D, Cannat M, Meyzen C, et al. Propagation of a melting anomaly along the ultra-slow Southwest Indian Ridge between 46°E and52°20′E: Interaction with the Crozet hot-spot? Geophys J Intern, 2009, 179: 687-699
[34]  31 Halbach P, Pracejus B, Maerten A. Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Econ Geol,1993, 88: 2210-2225??
[35]  32 Hekinian R, Fouquet Y. Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13°N. Econ Geol,1985, 80: 221-249??
[36]  33 曾志刚, 蒋富清, 秦蕴珊, 等. 冲绳海槽中部Jade 热液活动区中块状硫化物的稀土元素地球化学特征. 地质学报, 2001, 75:244-249
[37]  34 Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P, ed. Rare Earth Element Geochemistry.Amsterdam: Elsevier, 1984. 63-114
[38]  37 Humphris S E. Rare earth element composition of anhydrite: Implications for deposition and mobility within the TAG hydrothermalmound. Proc ODP, Sci Results, 1998, 158: 143-159
[39]  38 Sverjensky D A. Europium redox equilibria in aqueous sotution. Earth Planet Sci Lett, 1984, 67: 70-78??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133