Bates D M, Watts D G. Relative curvature measure of nonlinearity. J R Statist Soc B, 1980, 42: 1–25
[3]
Bates D M, Watts D G. Parameter transformations for improved approximate confidence regions in nonlinear least squares. Ann Statist, 1981, 9: 1152–1167
[4]
Tsai C L. Contributions to the design and analysis of nonlinear models. Doctoral Dissertation. Minneapolis: University of Minnesota, 1983
[5]
博成. 非线性回归模型LS 估计量的二阶矩. 高校应用数学学报, 1986, 1: 279–285
[6]
张应山. 多边矩阵理论. 郑州: 中国统计出版社, 1993
[7]
张利军, 程代展. 矩阵立体积的一般结构. 系统科学与数学, 2005, 25: 439–450
[8]
Cheng D. Matrix and Polynomial Approach to Dynamics Control Systems. Beijing: Science Press, 2002
[9]
Cheng D. On logic-based intelligent systems. In.[J].Proceedings of. ICCA 200.2005,June 27–29:-
[10]
Cheng D, Qi H. Matrix expression of logic and fuzzy control. In.[J].Proceedings of 44th IEEE CDC.2005,Dec 12–15:-
[11]
Zaborszky J G, Huang G, Zheng B, et al. On the phase protraits of a class of large nonlinear dynamic systems such as the power systems. IEEE Trans Auto Contr, 1988, 33: 4–15
[12]
Chiang H D, Hirsch M, Wu F. Stability regions of nonlinear autonomous dynamical systems. IEEE Trans Auto Contr, 1988, 33: 16–27
[13]
Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467
[14]
Kauffman S A. The Origins of Order: Self-organization and Selection in Evolution. New York: Oxford University Press, 1993
[15]
Kauffman S A. At Home in the Universe. Oxford: Oxford Univ Press, 1995
[16]
Hamilton A. Logic for Mathematicians. Revised ed. Cambridge: Cambridge University Press, 1988
[17]
Snustad D P.[J].Simmons M J. Principles of Genetics. 4th eds. New Jersey: John Wiley & Sons, Inc.2006,:-
[18]
Cheng D, Qi H. A linear representation of dynamics of Boolean networks. IEEE Trans Aut Contr, 2010, 55: 2251–2258
[19]
Cheng D. Input-state approach to Boolean networks. IEEE Trans Neural Networks, 2009, 20: 512–521
[20]
Farrow C, Heidel J, Maloney H, et al. Scalar equations for synchronous Boolean networks with biological applications. IEEE Trans Neural Networks, 2004, 15: 348–354
[21]
Heidel J, Maloney J, Farrow J, et al. Finding cycles in synchronous Boolean networks with applications to biochemical systems. Int J Bifurcat Chaos, 2003, 13: 535–552
[22]
Cheng D, Qi H. Controllability and observability of Boolean control networks. Automatica, 2009, 45: 1659–1665
[23]
Cheng D, Li Z, Qi H. Realization of Boolean control networks. Automatica, 2010, 46: 62–69
[24]
Cheng D, Qi H. State space analysis of Boolean networks. IEEE Trans Neural Networks, 2010, 21: 584–594
[25]
Robert F. Discrete Iterations: A Metric Study. Rokne J, translated. Berlin: Springer-Verlag, 1986
[26]
Cheng D, Qi H, Li Z, et al. Stability and stabilization of Boolean networks. Int J Robust Nonlinear Contr, 2011, 21: 134–156
[27]
Zhao Y, Li Z, Cheng D. Optimal control of logical control networks. IEEE Trans Auto Contr, doi:10.1109/TAC.2010.2092290
[28]
Cheng D, Qi H, Li Z. Model contruction of Boolean network via observed data. IEEE Trans Neural Networks, 2010, 22: 525–536
[29]
Cheng D, Zhao Y. Identification of Boolean control networks. Automatica, 2011, 47: 702–710
[30]
Laschov D, Margaliot M. A maximum principle for single-input Booolean control notworks. IEEE Trans Aut Contr, 2011, 56: 913–917
[31]
Li F, Sun J. Controllability of Boolean control networks with time delays in states. Automatica, 2011, 47: 603–607
[32]
Li F, Sun J, Wu Q. Obvervability of Boolean control networks with state time delays. IEEE Trans Neural Network, 2011, 22: 948–954
[33]
Foster J, Nightngale J D. A Short Course in General Relativity. New York: Springer-Verlag, 1995
[34]
Hall B C. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. New York: Springer-Verlag, 2003
[35]
Cheng D. Semi-tensor product of matrices and its applications to dynamic systems. In: Dayawansa W, Lindquist A, Zhou Y, eds. New Directions and Applications in Control Theory, Lecture Notes in Control and Information Sciences, Berlin: Springer, 2005. 61–79
[36]
Emmott S. Towards 2020 Science. Cambridge: Microsoft Prsearch Ltd, 2006
Xue A C, Wu F F, Ni Y, et al. Power system transient stability assessment based on quadratic approximation of stability region. Electric Power Sys Res, 2006, 76: 709–715
[56]
Xue A C, Shen C, Mei S, et al. A new transient stability index of power systems based on theory of stability region and its applications. In.[J].Proceedings of 2006 IEEE PES General Meeting.2006,June 17–23:-
[57]
Xue A C, Wu F F, Lu Q, et al. Power system dynamic security region and its approximation. IEEE Trans Circuits Sys I, 2006, 53: 2849–2859
[58]
? Xue A C, Hu W, Mei S, et al. Comparison of linear approximations for the dynamic security region of network-reduction power system. In.[J].Proceedings of 2006 IEEE PES General Meeting.2006,June 17–23:-
[59]
Isidori A. Nonlinear Control Systems. 3rd Ed. Berlin: Springer, 1995
[60]
Cheng D, Hu X, Wang Y. Non-regular feedback linearization of nonlinear systems via a normal form algorithm. Automatica, 2004, 40: 439–447
[61]
Zhang F. Matrix Theory, Basic Results and Techniques. New York: Springer-Verlag, 1999
[62]
Zhong J, Karasalo M, Cheng D, et al. New results on non-regular linearization of nonlinear systems. Int J Contr, 2007, 80: 1651–1664
[63]
Cheng D, Yang G, Xi Z. Nonlinear systems possessing linear symmetry. Int J Robust Nonlin Contr, 2007, 17: 51–81