全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

基于AFM单分子力谱技术的CD20-Rituximab间相互作用力测量

, PP. 2681-2688

Keywords: 原子力显微镜,单分子力谱,非霍奇金淋巴瘤,单克隆抗体

Full-Text   Cite this paper   Add to My Lib

Abstract:

原子力显微镜(AFM)的发明为测量分子间特异性相互作用力提供了新的技术手段.利用AFM单分子力谱(SMFS)技术分别测量了提纯的CD20,淋巴瘤Raji细胞表面的CD20和淋巴瘤病人B细胞表面的CD20与Rituximab(抗CD20单克隆抗体)之间的相互作用力.通过探针功能化技术,将Rituximab连接到AFM针尖;通过基底功能化技术,将提纯的CD20分子吸附到云母表面,对CD20分子进行了AFM成像,并测量了CD20与Rituximab之间的相互作用力;通过静电吸附和化学固定,将淋巴瘤Raji细胞和淋巴瘤病人细胞固定到载玻片表面,对Raji细胞和病人细胞进行了AFM成像,并分别测量了Raji细胞表面的CD20和病人B细胞表面的CD20与Rituximab之间的相互作用力.比较并分析了在提纯的CD20分子表面、Raji细胞表面和病人B细胞表面测量CD20-Rituximab相互作用力的差异,实验结果表明Raji细胞表面的CD20与Rituximab之间的相互作用力明显小于提纯的CD20以及淋巴瘤病人B细胞表面的CD20与Rituximab之间的相互作用力,为深入研究造成Rituximab耐药性差异的分子机理提供了技术思路和实验方法.

References

[1]  2 Dufrene Y F. Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc, 2008, 3: 1132–1138??
[2]  3 Dufrene Y F. Using nanotechniques to explore microbial surfaces. Nat Rev Microbiol, 2004, 2: 451–460??
[3]  4 Muller D J, Dufrene Y F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol, 2008, 3: 261–269??
[4]  5陈佩佩, 董宏涛, 陈龙, 等. 原子力显微术应用于活细胞及新鲜组织成像的新进展. 科学通报, 2009, 54: 2027–2032
[5]  6 李密, 刘连庆, 席宁, 等. 基于AFM 的淋巴瘤细胞成像及其机械特性测定. 科学通报, 2010, 55: 2188–2196
[6]  7 Dufrene Y F, Evans E, Engel A, et al. Five challenges to bringing single-molecule force spectroscopy into living cells. Nat Methods, 2011, 8: 123–127??
[7]  8 Muller D J, Helenius J, Alsteens D, et al. Force probing surfaces of living cells to molecular resolution. Nat Chem Biol, 2009, 5: 383–390
[8]  9 Florin E L, Moy V T, Gaub H E. Adhesion forces between individual ligand-receptor pairs. Science, 1994, 264: 415–417??
[9]  10 Hinterdorfer P, Baumgartner W, Gruber H J, et al. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA, 1996, 93: 3477–3481??
[10]  11 Puntheeranurak T, Wildling L, Gruber H J, et al. Ligands on the string: Single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. J Cell Sci, 2006, 119: 2960–2967??
[11]  12 Shi X, Xu L, Yu J, et al. Study of inhibition effect of Herceptin on interaction between Heregulin and ErbB receptors HER3/HER2 by single-molecule force spectroscopy. Exp Cell Res, 2009, 315: 2847–2855??
[12]  13 Beers S A, French R R, Chan H T C, et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: Implications for antibody selection. Blood, 2010, 115: 5191–5201??
[13]  14 Glennie M J, French R R, Cragg M S, et al. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol, 2007, 44: 3823–3837??
[14]  15 Cartron G, Watier H, Golay J, et al. From the bench to the bedside: Ways to improve Rituximab efficacy. Blood, 2004, 104: 2635–2642??
[15]  19 Stroh C, Wang H, Bash R, et al. Single-molecule recognition imaging microscopy. Proc Natl Acad Sci USA, 2004, 101: 12503–12507??
[16]  20 Ebner A, Wildling L, Kamruzzahan A S M, et al. A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjugate Chem, 2007, 18: 1176–1184??
[17]  21 Hinterdorfer P, Dufrene Y F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods, 2006, 3: 347–355??
[18]  22 Stevens F, Lo Y S, Harris J M, et al. Computer modeling of atomic force microscopy force measurements: Comparisons of Poisson, histogram, and continuum methods. Langmuir, 1999, 15: 207–213??
[19]  23 Kada G, Kienberger F, Hinterdorfer P. Atomic force microscopy in bionanotechnology. Nano Today, 2008, 3: 12–19
[20]  28 Wang H, Kutner L O, Lin M, et al. Imaging glycosylation. J Am Chem Soc, 2008, 130: 8154–8155??
[21]  31 Werten P J L, Remigy H W, Groot B L, et al. Progress in the analysis of membrane protein structure and function. FEBS Lett, 2002, 529: 65–72??
[22]  1 Binnig G, Quate C F, Gerber C. Atomic force microscope. Phys Rev Lett, 1986, 56: 930–933??
[23]  16 Lim S H, Beers S A, French R R, et al. Anti-CD20 monoclonal antibodies: Historical and future perspectives. Haematologica, 2010, 95: 135–143??
[24]  17 Li B, Zhao L, Guo H, et al. Characterization of a Rituximab variant with potent antitumor activity against Rituximab-resistant B-cell lymphoma. Blood, 2009, 114: 5007–5015??
[25]  18 Wang H, Bash R, Yodh J G, et al. Glutaraldehyde modified mica: A new surface for atomic force microscopy of chromatin. Biophys J, 2002, 83: 3619–3625??
[26]  24 Muller D J, Engel A, Amrein M. Preparation techniques for the observation of native biological systems with the atomic force microscope. Biosens Bioelectron, 1997, 12: 867–877??
[27]  25 Henderson R M, Schneider S, Li Q, et al. Imaging ROMK1 inwardly rectifying ATP-sensitive K+ channel protein using atomic force microscopy. Proc Natl Acad Sci USA, 1996, 93: 8756–8760??
[28]  26 Kirat K E, Burton I, Dupres V, et al. Sample preparation procedures for biological atomic force microscopy. J Microsc, 2005, 218: 199–207??
[29]  27 Kada G, Blayney L, Jeyakumar L H, et al. Recognition force microscopy/spectroscopy of ion channels: Applications to the skeletal muscle Ca2+ release channel (RYR1). Ultramicroscopy, 2001, 86: 129–137??
[30]  29 Muller D J, Dufrene Y F. Force nanoscopy of living cells. Curr Biol, 2011, 21: R212–R216??
[31]  30 Yamada K M, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell, 2007, 130: 601–610??
[32]  32 王秋兰, 卢育洪, 李盛璞, 等. B 细胞膜CD20 抗原的分布与单分子力谱探测. 生物工程学报, 2011, 27: 131–136
[33]  33 Gu X, Jia X, Feng J, et al. Molecular modeling and affinity determination of scFv antibody: Proper linker peptide enhances its activity. Ann Biomed Eng, 2010, 38: 537–549??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133