1 Heaman L M, LeCheminant A N. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chem Geol, 1993, 110: 95-126??
[2]
6 Fletcher I R, Rasmussen B, McNaughton N J. SHRIMP U-Pb geochronology of authigenic xenotime and its potential for dating sedimentarybasins. Aust J Earth Sci, 2000, 47: 845-859??
[3]
7 England G L, Rasmussen B, McNaughton N J, et al. SHRIMP U-Pb ages of diagenetic and hydrothermal xenotime from the ArchaeanWitwatersrand Supergroup of South Africa. Terra Nova, 2001, 13: 360-367
[4]
10 Kositcin N, McNaughton N J, Griffin B J, et al. Textural and geochemical discrimination between xenotime of different origin in the ArchaeanWitwatersrand Basin, South Africa. Geochim Cosmochim Acta, 2003, 67: 709-731??
[5]
11 Rasmussen B, Fletcher I R, Bengtson S, et al. SHRIMP U-Pb dating of diagenetic xenotime in the Stirling Range Formation, WesternAustralia: 1.8 billion year minimum age for the Stirling biota. Precambrain Res, 2004, 133: 329-337
[6]
12 Tallarico F H B, McNaughton N J, Groves D I, et al. Geological and SHRIMP II U-Pb constraints on the age and origin of the BrevesCu-Au-(W-Bi-Sn) deposit, Carajis, Brazil. Miner Deposit, 2004, 39: 68-86??
[7]
14 Mello E F, Xavier R P, McNaughton N J, et al. Age constraints on felsic intrusions, metamorphism and gold mineralisation in the PalaeoproterozoicRio Itapicuru greenstone belt, NE Bahia State, Brazil. Miner Deposi, 2006, 40: 849-866??
[8]
15 Rasmussen B, Fletcher I R, Muhling J R, et al. Prolonged history of episodic fluid flow in giant hematite ore bodies: Evidence from in situU-Pb geochronology of hydrothermal xenotime. Earth Planet Sci Lett, 2007, 258: 249-259??
[9]
17 Rasmussen B, Fletcher I R, Muhling J R, et al. Bushveld-aged fluid flow, peak metamorphism, and gold mobilization in the Witwatersrandbasin, South Africa: Constraints from in situ SHRIMP U-Pb dating of monazite and xenotime. Geology, 2007, 35: 931-934??
[10]
18 Sarma D S, McNaughton N J, Fletcher I R, et al. Timing of gold mineralization in the hutti gold deposit, Dharwar Craton, South India.Econ Geol, 2008, 103: 1715-1727??
[11]
21 Suzuki K, Adachi M. Precambrian provenance and Silurian metamorphism of the tsubonosawa paragneiss in the South Kitakami Terrane,Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochem J, 1991, 25: 357-376??
[12]
24 Hetherington C J, Jercinovic M J, Williams M L, et al. Understanding geologic processes with xenotime: Composition, chronology, and aprotocol for electron probe microanalysis. Chem Geol, 2008, 254: 133-147??
[13]
30 Williams I S, Hergt J M. U-Pb dating of Tasmanian dolerites: A cautionary tale of SHRIMP analysis of high-U zircon. In: Woodhead J D,Hergt J M, Noble W P, eds. Beyond 2000: New frontiers in Isotope Geoscience. Abstracts and Proceedings, Lorne, Australia. Melbourne:University of Melbourne, 2000. 185-188
34 McKee E H, Rytuba J J, Xu K Q. Geochronology of the Xihuashan composite granitic body and tungsten mineralization, Jiangxi Province,South China. Econ Geol, 1987, 82: 218-223??
39 Hawkins D P, Bowring S A. U-Pb systematics of monazite and xenotime: Case studies from the Paleoproterozoic of the Grand Canyon,Arizona. Contrib Mineral Petrol, 1997, 127: 87-103??
[21]
42 Salier B P, Grovest D I, McNaughton N J, et al. Geochronological and stable isotope evidence for widespread orogenic gold mineralizationfrom a deep-seated fluid Source at ca 2.65 Ga in the Laverton Gold Province, Western Australia. Econ Geol, 2005, 100: 1363-1388
[22]
43 Crowley J L, Waters D J, Searle M P, et al. Pleistocene melting and rapid exhumation of the Nanga Parbat massif, Pakistan: Age and P-Tconditions of accessory mineral growth in migmatite and leucogranite. Earth Planet Sci Lett, 2009, 288: 408-420??
[23]
44 Dodson M H. Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol, 1973, 40: 259-274??
[24]
51 Horn I, Rudnick R L, McDonough W F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laserablation-ICP-MS: Application to U-Pb geochronology. Chem Geol, 2000, 164: 281-301??
[25]
2 Chamberlain K R, Schmitt A K, Swapp S M, et al. In situ U-Pb SIMS (IN-SIMS) micro-baddeleyite daing of mafic rocks: Method withexamples. Precambrian Res, 2010, 183: 379-387??
[26]
3 Li Q L, Li X H, Liu Y, et al. Precise U-Pb and Th-Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry.Chem Geol, 2010, 269: 396-405??
[27]
4 Wu F Y, Yang Y H, Mitchell R H, et al. In situ U-Pb age determination and Nd isotopic analysis of perovskites from kimberlites insouthern Africa and Somerset Island, Canada. Lithos, 2010, 115: 205-222??
[28]
5 McNaughton N J, Rasmussen B, Fletcher I R. SHRIMP uranium-lead dating of diagenetic xenotime in siliciclastic sedimentary rocks.Science, 1999, 285: 78-80??
[29]
8 Vallini D, Rasmussen B, Krape? B, et al. Obtaining diagenetic ages from metamorphosed sedimentary rocks: U-Pb dating of unusuallycoarse xenotime cement in phosphatic sandstone. Geology, 2002, 30: 1083-1086??
[30]
9 Fletcher I R, McNaughton N J, Aleinikoff J, et al. Improved calibration procedures and new standards for U-Pb and Th-Pb dating ofPhanerozoic xenotime by ion microprobe. Chem Geol, 2004, 209: 295-314??
[31]
13 Rasmussen B, Fletcher I R, Sheppard S. Isotopic dating of the migration of a low-grade metamorphic front during orogenesis. Geology,2005, 33: 773-776??
[32]
16 Rasmussen B, Fletcher I R, Muhling J R. In situ U-Pb dating and element mapping of three generations of monazite: Unravelling cryptictectonothermal events in low-grade terranes. Geochim Cosmochim Acta, 2007, 71: 670-690??
[33]
19 Rasmussen B, Mueller A G, Fletcher I R. Zirconolite and xenotime U-Pb age constraints on the emplacement of the Golden Mile Doleritesill and gold mineralization at the Mt Charlotte mine, Eastern Goldfields Province, Yilgarn Craton, Western Australia. Contrib MineralPetrol, 2009, 157: 559-572??
[34]
20 Rasmussen B, Fletcher I R, Muhling J R, et al. In situ U-Th-Pb geochronology of monazite and xenotime from the Jack Hills belt: Implicationsfor the age of deposition and metamorphism of Hadean zircons. Precambrian Res, 2010, 180: 26-46??
[35]
22 Asami M, Suzuki K, Grew E S. Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from theArchean Napier Complex, East Antarctica: Evidence for ultra-high-temperature metamorphism at 2400 Ma. Precambrian Res, 2002, 114:249-275
[36]
23 Cocherie A, Legendre O. Potential minerals for determining U-Th-Pb chemical age using electron microprobe. Lithos, 2007, 93: 288-309??
[37]
25 Suzuki K, Kato T. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordantage data. Gondwana Res, 2008, 14: 569-586??
[38]
26 Becccaletto L, Bonev N, Bosch D, et al. Record of a Palaeogene syn-collisional extension in the north Aegean region: evidence from theKemer micaschists (NW Turkey). Geol Mag, 2007, 144: 393-400??
[39]
27 Kl?tzli E, Kl?tzli U, Kosler J. A possible laser ablation xenotime U-Pb age standard: Reproducibility and accuracy. Geochim CosmochimActa, 2007, 71: 495
[40]
28 Wall F, Niku-Paavola V N, Storey C, et al. Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: Unusually low LREE: HREE ratioin carbonatite, and the first dating of xenotime overgrowths on zircon. Can Mineral, 2008, 46: 861-877??
37 Wang R C, Fontan F, Chen X M, et al. Accessory minerals in the Xihuashan Y-enriched granitic complex, southern China: A record ofmagmatic and hydrothermal stages of evolution. Can Mineral, 2003, 41: 727-748??
[43]
38 Aleinikoff J N, Grauch R I. U-Pb geochronologic constraints on the origin of a unique monazite-xenotime gneiss, Hudson Highlands, NewYork. Am J Sci, 1990, 290: 522-546??
[44]
40 Scherer E, Münker C, Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001, 293: 683-687??
[45]
41 Schaltegger U, Pettke T, Audétat A, et al. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia):Part I: Crystallization of zircon and REE-phosphates over three million years—A geochemical and U-Pb geochronological study.Chem Geol, 2005, 220: 215-235??
[46]
45 Cherniak D J. Pb and rare earth element diffusion in xenotime. Lithos, 2006, 88: 1-14??
[47]
46 Zhao Z F, Zheng Y F. Diffusion compensation for argon, hydrogen, lead, and strontium in minerals: Empirical relationships to crystalchemistry. Am Mineral, 2007, 92: 289-308??
[48]
47 Th?ni M, Miller Ch, Zanetti A, et al. Sm-Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-Sand EPMA data constrain multiple Permian-Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chem Geol, 2008, 254:216-237??
[49]
48 Andrehs G, Heinrich W. Experimental determination of REE distributions between monazite and xenotime: Potential for temperature-calibrated geochronology. Chem Geol, 1998, 149: 83-96??
[50]
49 Stern R A, Rayner N. Ages of several xenotime megacrysts by ID-TIMS: Potential reference materials for ion microprobe U-Pb geochronology.Radiogenic Age and Isotopic Studies: Report 16, Geological Survey of Canada, Current Research 2003-F1, 2003. 1-7
[51]
50 Schoene B, Crowley J L, Condon D J, et al. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data.Geochim Cosmochim Acta, 2006, 70: 426-445??