全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

磷钇矿U-Pb年龄激光原位ICP-MS测定

, PP. 2772-2781

Keywords: 磷钇矿,激光ICP-MS,U-Pb,测年

Full-Text   Cite this paper   Add to My Lib

Abstract:

磷钇矿富含U和Th,并具有较低的初始Pb含量,是U-Pb和Th-Pb同位素定年的理想对象.由于普遍存在于多种岩石中,磷钇矿的U-Th-Pb定年具有广阔的应用前景.但相对于较为成熟和应用广泛的离子探针(如SHRIMP)U-Pb定年方法而言,磷钇矿激光ICP-MS定年开展得较少.本文利用193nmArF准分子激光剥蚀系统和Agilent7500a四极杆等离子质谱仪(Q-ICP-MS),对磷钇矿标样MG-1和BS-1进行了U-Pb年龄测定.在16,24和32μm不同束斑条件下,以磷钇矿标样MG-1为外部标准校正另一个磷钇矿标样BS-1,获得的U-Pb年龄(206Pb/238U加权平均年龄)分别为510.1±5.2Ma(2σn=21),509.8±4.3Ma(2σn=21)和510.0±4.6Ma(2σn=21),在误差范围内均与TIMS测试结果(206Pb/238U平均年龄为508.8±1.4Ma)一致,表明所建立的磷钇矿U-Pb年龄激光原位ICP-MS测定方法是可靠的.运用这一方法,对藏南苦堆淡色花岗岩和华南西华山花岗岩中的磷钇矿进行了实验,取得了满意的结果.此外,为检验基体效应对磷钇矿U-Pb激光ICP-MS测年结果的影响,分别以独居石和锆石标样作为外部标准对磷钇矿标样BS-1进行了系列定年测试,获得的结果通常偏离样品的真实年龄,因此建议在磷钇矿激光剥蚀定年中采用与基体性质匹配的外部标样.

References

[1]  1 Heaman L M, LeCheminant A N. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chem Geol, 1993, 110: 95-126??
[2]  6 Fletcher I R, Rasmussen B, McNaughton N J. SHRIMP U-Pb geochronology of authigenic xenotime and its potential for dating sedimentarybasins. Aust J Earth Sci, 2000, 47: 845-859??
[3]  7 England G L, Rasmussen B, McNaughton N J, et al. SHRIMP U-Pb ages of diagenetic and hydrothermal xenotime from the ArchaeanWitwatersrand Supergroup of South Africa. Terra Nova, 2001, 13: 360-367
[4]  10 Kositcin N, McNaughton N J, Griffin B J, et al. Textural and geochemical discrimination between xenotime of different origin in the ArchaeanWitwatersrand Basin, South Africa. Geochim Cosmochim Acta, 2003, 67: 709-731??
[5]  11 Rasmussen B, Fletcher I R, Bengtson S, et al. SHRIMP U-Pb dating of diagenetic xenotime in the Stirling Range Formation, WesternAustralia: 1.8 billion year minimum age for the Stirling biota. Precambrain Res, 2004, 133: 329-337
[6]  12 Tallarico F H B, McNaughton N J, Groves D I, et al. Geological and SHRIMP II U-Pb constraints on the age and origin of the BrevesCu-Au-(W-Bi-Sn) deposit, Carajis, Brazil. Miner Deposit, 2004, 39: 68-86??
[7]  14 Mello E F, Xavier R P, McNaughton N J, et al. Age constraints on felsic intrusions, metamorphism and gold mineralisation in the PalaeoproterozoicRio Itapicuru greenstone belt, NE Bahia State, Brazil. Miner Deposi, 2006, 40: 849-866??
[8]  15 Rasmussen B, Fletcher I R, Muhling J R, et al. Prolonged history of episodic fluid flow in giant hematite ore bodies: Evidence from in situU-Pb geochronology of hydrothermal xenotime. Earth Planet Sci Lett, 2007, 258: 249-259??
[9]  17 Rasmussen B, Fletcher I R, Muhling J R, et al. Bushveld-aged fluid flow, peak metamorphism, and gold mobilization in the Witwatersrandbasin, South Africa: Constraints from in situ SHRIMP U-Pb dating of monazite and xenotime. Geology, 2007, 35: 931-934??
[10]  18 Sarma D S, McNaughton N J, Fletcher I R, et al. Timing of gold mineralization in the hutti gold deposit, Dharwar Craton, South India.Econ Geol, 2008, 103: 1715-1727??
[11]  21 Suzuki K, Adachi M. Precambrian provenance and Silurian metamorphism of the tsubonosawa paragneiss in the South Kitakami Terrane,Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochem J, 1991, 25: 357-376??
[12]  24 Hetherington C J, Jercinovic M J, Williams M L, et al. Understanding geologic processes with xenotime: Composition, chronology, and aprotocol for electron probe microanalysis. Chem Geol, 2008, 254: 133-147??
[13]  30 Williams I S, Hergt J M. U-Pb dating of Tasmanian dolerites: A cautionary tale of SHRIMP analysis of high-U zircon. In: Woodhead J D,Hergt J M, Noble W P, eds. Beyond 2000: New frontiers in Isotope Geoscience. Abstracts and Proceedings, Lorne, Australia. Melbourne:University of Melbourne, 2000. 185-188
[14]  31 张宏飞, Harris N, Parrish R, 等. 北喜马拉雅萨迦穹窿中苦堆和萨迦淡色花岗岩的U-Pb 年龄及其地质意义. 科学通报, 2004, 49:2090-2094
[15]  32 李亿斗, 盛继福, Le B L, 等. 西华山花岗岩下陆壳起源的证据. 地质学报, 1986, 60: 256-273
[16]  33 沈渭洲, 徐士进, 王银喜, 等. 西华山花岗岩Nd-Sr 同位素研究. 科学通报, 1994, 39: 154-156
[17]  34 McKee E H, Rytuba J J, Xu K Q. Geochronology of the Xihuashan composite granitic body and tungsten mineralization, Jiangxi Province,South China. Econ Geol, 1987, 82: 218-223??
[18]  35 李华芹, 刘家齐, 魏林. 热液矿床流体包裹体年代学研究及其地质应用. 北京: 地质出版社, 1993. 956-962
[19]  36 杨兢红, 陈欣阳, 王旭东. 江西荡萍钨矿花岗岩年代学与成矿流体地球化学研究. 矿物学报, 2009, 29(增刊): 339-340
[20]  39 Hawkins D P, Bowring S A. U-Pb systematics of monazite and xenotime: Case studies from the Paleoproterozoic of the Grand Canyon,Arizona. Contrib Mineral Petrol, 1997, 127: 87-103??
[21]  42 Salier B P, Grovest D I, McNaughton N J, et al. Geochronological and stable isotope evidence for widespread orogenic gold mineralizationfrom a deep-seated fluid Source at ca 2.65 Ga in the Laverton Gold Province, Western Australia. Econ Geol, 2005, 100: 1363-1388
[22]  43 Crowley J L, Waters D J, Searle M P, et al. Pleistocene melting and rapid exhumation of the Nanga Parbat massif, Pakistan: Age and P-Tconditions of accessory mineral growth in migmatite and leucogranite. Earth Planet Sci Lett, 2009, 288: 408-420??
[23]  44 Dodson M H. Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol, 1973, 40: 259-274??
[24]  51 Horn I, Rudnick R L, McDonough W F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laserablation-ICP-MS: Application to U-Pb geochronology. Chem Geol, 2000, 164: 281-301??
[25]  2 Chamberlain K R, Schmitt A K, Swapp S M, et al. In situ U-Pb SIMS (IN-SIMS) micro-baddeleyite daing of mafic rocks: Method withexamples. Precambrian Res, 2010, 183: 379-387??
[26]  3 Li Q L, Li X H, Liu Y, et al. Precise U-Pb and Th-Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry.Chem Geol, 2010, 269: 396-405??
[27]  4 Wu F Y, Yang Y H, Mitchell R H, et al. In situ U-Pb age determination and Nd isotopic analysis of perovskites from kimberlites insouthern Africa and Somerset Island, Canada. Lithos, 2010, 115: 205-222??
[28]  5 McNaughton N J, Rasmussen B, Fletcher I R. SHRIMP uranium-lead dating of diagenetic xenotime in siliciclastic sedimentary rocks.Science, 1999, 285: 78-80??
[29]  8 Vallini D, Rasmussen B, Krape? B, et al. Obtaining diagenetic ages from metamorphosed sedimentary rocks: U-Pb dating of unusuallycoarse xenotime cement in phosphatic sandstone. Geology, 2002, 30: 1083-1086??
[30]  9 Fletcher I R, McNaughton N J, Aleinikoff J, et al. Improved calibration procedures and new standards for U-Pb and Th-Pb dating ofPhanerozoic xenotime by ion microprobe. Chem Geol, 2004, 209: 295-314??
[31]  13 Rasmussen B, Fletcher I R, Sheppard S. Isotopic dating of the migration of a low-grade metamorphic front during orogenesis. Geology,2005, 33: 773-776??
[32]  16 Rasmussen B, Fletcher I R, Muhling J R. In situ U-Pb dating and element mapping of three generations of monazite: Unravelling cryptictectonothermal events in low-grade terranes. Geochim Cosmochim Acta, 2007, 71: 670-690??
[33]  19 Rasmussen B, Mueller A G, Fletcher I R. Zirconolite and xenotime U-Pb age constraints on the emplacement of the Golden Mile Doleritesill and gold mineralization at the Mt Charlotte mine, Eastern Goldfields Province, Yilgarn Craton, Western Australia. Contrib MineralPetrol, 2009, 157: 559-572??
[34]  20 Rasmussen B, Fletcher I R, Muhling J R, et al. In situ U-Th-Pb geochronology of monazite and xenotime from the Jack Hills belt: Implicationsfor the age of deposition and metamorphism of Hadean zircons. Precambrian Res, 2010, 180: 26-46??
[35]  22 Asami M, Suzuki K, Grew E S. Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from theArchean Napier Complex, East Antarctica: Evidence for ultra-high-temperature metamorphism at 2400 Ma. Precambrian Res, 2002, 114:249-275
[36]  23 Cocherie A, Legendre O. Potential minerals for determining U-Th-Pb chemical age using electron microprobe. Lithos, 2007, 93: 288-309??
[37]  25 Suzuki K, Kato T. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordantage data. Gondwana Res, 2008, 14: 569-586??
[38]  26 Becccaletto L, Bonev N, Bosch D, et al. Record of a Palaeogene syn-collisional extension in the north Aegean region: evidence from theKemer micaschists (NW Turkey). Geol Mag, 2007, 144: 393-400??
[39]  27 Kl?tzli E, Kl?tzli U, Kosler J. A possible laser ablation xenotime U-Pb age standard: Reproducibility and accuracy. Geochim CosmochimActa, 2007, 71: 495
[40]  28 Wall F, Niku-Paavola V N, Storey C, et al. Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: Unusually low LREE: HREE ratioin carbonatite, and the first dating of xenotime overgrowths on zircon. Can Mineral, 2008, 46: 861-877??
[41]  29 谢烈文, 张艳斌, 张辉煌, 等. 锆石/斜锆石U-Pb 和Lu-Hf 同位素以及微量元素成分的同时原位测定. 科学通报, 2008, 53: 220-228
[42]  37 Wang R C, Fontan F, Chen X M, et al. Accessory minerals in the Xihuashan Y-enriched granitic complex, southern China: A record ofmagmatic and hydrothermal stages of evolution. Can Mineral, 2003, 41: 727-748??
[43]  38 Aleinikoff J N, Grauch R I. U-Pb geochronologic constraints on the origin of a unique monazite-xenotime gneiss, Hudson Highlands, NewYork. Am J Sci, 1990, 290: 522-546??
[44]  40 Scherer E, Münker C, Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001, 293: 683-687??
[45]  41 Schaltegger U, Pettke T, Audétat A, et al. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia):Part I: Crystallization of zircon and REE-phosphates over three million years—A geochemical and U-Pb geochronological study.Chem Geol, 2005, 220: 215-235??
[46]  45 Cherniak D J. Pb and rare earth element diffusion in xenotime. Lithos, 2006, 88: 1-14??
[47]  46 Zhao Z F, Zheng Y F. Diffusion compensation for argon, hydrogen, lead, and strontium in minerals: Empirical relationships to crystalchemistry. Am Mineral, 2007, 92: 289-308??
[48]  47 Th?ni M, Miller Ch, Zanetti A, et al. Sm-Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-Sand EPMA data constrain multiple Permian-Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chem Geol, 2008, 254:216-237??
[49]  48 Andrehs G, Heinrich W. Experimental determination of REE distributions between monazite and xenotime: Potential for temperature-calibrated geochronology. Chem Geol, 1998, 149: 83-96??
[50]  49 Stern R A, Rayner N. Ages of several xenotime megacrysts by ID-TIMS: Potential reference materials for ion microprobe U-Pb geochronology.Radiogenic Age and Isotopic Studies: Report 16, Geological Survey of Canada, Current Research 2003-F1, 2003. 1-7
[51]  50 Schoene B, Crowley J L, Condon D J, et al. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data.Geochim Cosmochim Acta, 2006, 70: 426-445??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133