全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

羧基化碳点-铝(Ⅲ)复合荧光探针定量检测氟离子

DOI: 10.1360/972011-1461, PP. 2952-2958

Keywords: CDs,复合荧光探针,氟离子

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了羧基化碳点(CDs)并利用其羧基与金属离子的配位特性构建了三价铝离子(Al3+)-CDs复合荧光探针,进一步利用氟离子与羧基对金属铝离子的竞争特性建立了环境中氟离子的定量检测方法.结果表明,Al3+使表面羧基化荧光CDs簇集而发生显著的荧光猝灭.当F-存在时,由于F-能与Al3+发生强烈相互作用,CDs分散,荧光恢复.据此建立荧光增强定量检测F-的方法,其线性范围为4.0×10-5~6.0×10-3mol/L.该法用于玻璃厂排放的废水中F-的检测,回收率在93%~106%之间,相对标准偏差RSD小于7.6%,简单快速.

References

[1]  Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc, 2006, 128: 7756-7757
[2]  Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun, 2008, 41: 5116-5118
[3]  Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc, 2007, 129: 11318-11319
[4]  Li H T, He X D, Liu Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 2011, 49: 605-609
[5]  Zong J, Zhu Y H, Yang X L, et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem Commun, 2011, 47: 764-766
[6]  Liu H P, Ye T, Mao C D. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed, 2007, 46: 6473-6475
[7]  Bourlinos A B, Stassinopoulos A, Anglos D, et al. Surface functionalized carbogenic quantum dots. Small, 2008, 4: 455-458
[8]  Yang S T, Cao L, Luo P G, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc, 2009, 131: 11308-11309
[9]  Yang S T, Wang X, Wang H F, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C, 2009, 113: 18110-18114
[10]  Ho J A, Lin Y C, Wang L S, et al. Carbon nanoparticle-enhanced immunoelectrochemical detection for protein tumor marker with cadmium sulfide biotracers. Anal Chem, 2009, 81: 1340-1346
[11]  Chen H, Lin L, Lin Z, et al. Flow-injection analysis of hydrogen peroxide based on carbon nanospheres catalyzed hydrogen carbonatehydrogen peroxide chemiluminescent reaction. Analyst, 2011, 136: 1957-1964
[12]  Zhao H X, Liu L Q, Liu Z D, et al. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem Commun, 2011, 47: 2604-2606
[13]  Rochat S, Severin K. A simple fluorescence assay for the detection of fluoride in water at neutral pH. Chem Commun, 2011, 47: 4391-4393
[14]  Tinker J H, Baker M T. Sevoflurane, fluoride ion, and renal toxicity. Anesthesiology, 1995, 83: 232-233
[15]  Cittanova M L, Lelongt B, Verpont M C, et al. Fluoride ion toxicity in human kidney collecting duct cells. Anesthesiology, 1996, 84: 428-435
[16]  Somer G, Kalayc? S, Basak I. Preparation of a new solid state fluoride ion selective electrode and application. Talanta, 2010, 80: 1129-1132
[17]  Miyake Y, Yamashita N, Rostkowski P, et al. Determination of trace levels of total fluorine in water using combustion ion chromatography for fluorine: A mass balance approach to determine individual perfluorinated chemicals in water. J Chromatogr A, 2007, 1143: 98-104
[18]  Hang Y P, Wu C Y. Ion chromatography for rapid and sensitive determination of fluoride in milk after headspace single-drop microextraction with in situ generation of volatile hydrogen fluoride. Anal Chim Acta, 2010, 661: 161-166
[19]  Kumar S, Luxami V, Kumar A. Chromofluorescent probes for selective detection of fluoride and acetate ions. Org Lett, 2008, 10: 5549-5552
[20]  Li Y M, Zhang X L, Zhu B C, et al. A highly selective colorimetric and “off-on-off” fluorescent probe for fluoride ions. Anal Sci, 2010, 26: 1077-1080
[21]  Guha S, Saha S. Fluoride ion sensing by an anion-? interaction. J Am Chem Soc, 2010, 132: 17674-17677
[22]  Mahapatra A K, Hazra G, Sahoo P. Synthesis of indolo[3,2-b]carbazole-based new colorimetric receptor for anions: A unique color change for fluoride ions. Beilstein J Org Chem, 2010, 6: 1-8
[23]  Zhu B H, Yuan F, Li R X, et al. A highly selective colorimetric and ratiometric fluorescent chemodosimeter for imaging fluoride ions in living cells. Chem Commun, 2011, 47: 7098-7100
[24]  Bourlinos A B, Stassinopoulos A, Anglos D, et al. Photoluminescent carbogenic dots. Chem Mater, 2008, 20: 4539-4541
[25]  Tian L, Ghosh D, Chen W, et al. Nanosized carbon particles from natural gas soot. Chem Mater, 2009, 21: 2803-2809
[26]  Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater, 2009, 21: 5563-5565
[27]  Wang X, Cao L, Lu F S, et al. Photoinduced electron transfers with carbon dots. Chem Commun, 2009, 25: 3774-3776
[28]  Liu R L, Wu D Q, Liu S H, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed, 2009, 48: 1-5
[29]  曹春, 刘玫瑰, 曹明, 等. 基于自然尺寸分布的单一CdTe 量子点样品中Eu (III)诱导的能量转移测定磷酸根离子. 中国科学: 化学, 2010, 40: 379-385
[30]  Wade C R, Broomsgrove A E J, Aldridge S, et al. Fluoride ion complexation and sensing using organoboron compounds. Chem Rev, 2010, 110: 3958-3984
[31]  Badr I H A, Meyerhoff M E. Fluoride-selective optical sensor based on aluminum(iii)-octaethylporphyrin in thin polymeric film: Further characterization and practical application. Anal Chem, 2005, 77: 6719-6728
[32]  Zhu H, Wang X L, Li Y L, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun, 2009, 34: 5118-5120
[33]  Zhang B, Liu C Y, Liu Y. A novel one-step approach to synthesize fluorescent carbon nanoparticles. Eur J Inorg Chem, 2010, 28: 4411-4414
[34]  Wang F, Xie Z, Zhang H, et al. Highly luminescent organosilane-functionalized carbon dots. Adv Funct Mater, 2011, 21: 1027-1031
[35]  Sun Y P, Wang X, Lu F S, et al. Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J Phys Chem C, 2008, 112: 18295-18298

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133