全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

基于铁磁金属薄膜纳米点连接的磁电阻现象

, PP. 2941-2946

Keywords: 真空薄膜,铁磁纳米点连接,各向异性磁电阻,弹道磁电阻

Full-Text   Cite this paper   Add to My Lib

Abstract:

比较了运用电子束光刻技术和真空薄膜沉积技术制备的宽度和厚度分别为20~250nm和10nm的系列铁磁金属薄膜纳米点连接在不同温度下的磁电阻现象和I-V特性,得出了铁磁金属薄膜纳米点连接的磁电阻和电阻与它的中间部位纳米局部区域的宽度之间没有必然关系,说明铁磁金属薄膜纳米点连接的中间部位纳米局部区域的电阻与它两端的两个微米尺度的铁磁金属薄膜电极的电阻相比不起绝对决定作用,也就是说,我们所测得的铁磁金属薄膜纳米点连接的电阻主要来自于它的两个微米尺度的铁磁金属薄膜电极.比较了铁磁金属薄膜纳米点连接和在同样真空薄膜沉积条件下制备的同样厚度的0.2cm×0.8cm的铁磁金属薄膜的磁电阻之间的关系,发现与薄膜相比,纳米点连接样品的磁电阻比例普遍得到较大的提高,也就是说我们所测量的铁磁金属薄膜纳米点连接的磁电阻主要来自于纳米点连接样品的中间部位纳米局部区域.可以得出在铁磁金属薄膜纳米点连接中,由于具有很高磁电阻比例的中间部位纳米局部区域的电阻与具有很低磁电阻比例的微米尺度的铁磁金属薄膜电极的电阻相比很小,所以整个铁磁金属薄膜纳米点连接的电子输运行为由样品的微米尺度的铁磁金属薄膜电极的电子输运行为决定,表现为它所呈现的是线性的I-V特性曲线和类似于铁磁金属薄膜的各向异性磁电阻现象.

References

[1]  Moore G E. Gramming more component onto integrated circuits. Electronics, 1965, 38: 114-117 [2] Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunneling microscope. Nature, 1990, 344: 524-526 [3] Stroscio J A, Eigler D M. Atomic and molecular manipulation with the scanning tunnelling microscope. Science, 1991, 254: 1319-1326 [4] Aviram A, Ratner M A. Molecular rectifiers. Chem Phys Lett, 1974, 29: 277-283 [5] Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294: 1488-1495 [6] Champagne A R, Pasupathy A N, Ralph D C. Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett, 2005, 5: 305-308 [7] Garcia N, Munoz M, Zhao Y W. Magnetoresistance in Ni nanocontacts in excess of 200% at room temperature and 100 Oe field. Phys Rev Lett, 1999, 82: 2923-2926 [8] Chopra H D, Hua S Z. Ballistic magnetoresistance over 3000% in Ni nanocontacts at room temperature. Phys Rev B, 2002, 66: 020403 [9] Chopra H D, Matthew R S, Jason N A, et al. The quantum spin-valve in cobalt atomic point contacts. Nat Mater, 2005, 4: 832-837 [10] Haug T, Perzlmaier K, Back C H. In situ magnetoresistance measurements of ferromagnetic nanocontacts in the Lorentz transmission electron microscope. Phys Rev B, 2009, 79: 024414 [11] Sangiao S, Morellón L, Ibarra M R, et al. Ferromagnet-superconductor nanocontacts grown by focused electron/ion beam. Solid State Commun, 2011, 151: 37-41 [12] 程浩, 刘鸿, 汪令江, 等. 铁磁金属纳米点接触的磁电阻. 安徽大学学报(自然科学版), 2011, 35: 64-69 [13] Tatara G, Zhao Y W, Munoz M, et al. Domain wall scattering explains 300% ballistic magnetoconductance of nanocontacts. Phys Rev Lett, 1999, 83: 2030-2033 [14] Egelhoff Jr W F, Gana L, Ettedguia H, et al. Artifacts that mimic ballistic magnetoresistance. J Magn Magn Mater, 2005, 287: 496-500 [15] Doudin B, Viret M. Ballistic magnetoresistance[J].J Phys: Cond Matter.2008, 20:083201- [16] Mallett J J, Svedberg E B, Ettedgui H, et al. Absence of ballistic magnetoresistance in Ni contacts controlled by an electrochemical feedback system. Phys Rev B, 2004, 70: 172406 [17] Garcia N, Munoz M, Qian G G, et al. Ballistic magnetoresistance in a magnetic nanometer sized contact: An effective gate for spintronics. Appl Phys Lett, 2001, 79: 4550-4552
[2]  Moore G E. Gramming more component onto integrated circuits. Electronics, 1965, 38: 114-117
[3]  Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunneling microscope. Nature, 1990, 344: 524-526
[4]  Stroscio J A, Eigler D M. Atomic and molecular manipulation with the scanning tunnelling microscope. Science, 1991, 254: 1319-1326
[5]  Aviram A, Ratner M A. Molecular rectifiers. Chem Phys Lett, 1974, 29: 277-283
[6]  Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294: 1488-1495
[7]  Champagne A R, Pasupathy A N, Ralph D C. Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett, 2005, 5: 305-308
[8]  Garcia N, Munoz M, Zhao Y W. Magnetoresistance in Ni nanocontacts in excess of 200% at room temperature and 100 Oe field. Phys Rev Lett, 1999, 82: 2923-2926
[9]  Chopra H D, Hua S Z. Ballistic magnetoresistance over 3000% in Ni nanocontacts at room temperature. Phys Rev B, 2002, 66: 020403
[10]  Chopra H D, Matthew R S, Jason N A, et al. The quantum spin-valve in cobalt atomic point contacts. Nat Mater, 2005, 4: 832-837
[11]  Haug T, Perzlmaier K, Back C H. In situ magnetoresistance measurements of ferromagnetic nanocontacts in the Lorentz transmission electron microscope. Phys Rev B, 2009, 79: 024414
[12]  Sangiao S, Morellón L, Ibarra M R, et al. Ferromagnet-superconductor nanocontacts grown by focused electron/ion beam. Solid State Commun, 2011, 151: 37-41
[13]  程浩, 刘鸿, 汪令江, 等. 铁磁金属纳米点接触的磁电阻. 安徽大学学报(自然科学版), 2011, 35: 64-69
[14]  Tatara G, Zhao Y W, Munoz M, et al. Domain wall scattering explains 300% ballistic magnetoconductance of nanocontacts. Phys Rev Lett, 1999, 83: 2030-2033
[15]  Egelhoff Jr W F, Gana L, Ettedguia H, et al. Artifacts that mimic ballistic magnetoresistance. J Magn Magn Mater, 2005, 287: 496-500
[16]  Doudin B, Viret M. Ballistic magnetoresistance[J].J Phys: Cond Matter.2008, 20:083201-
[17]  Mallett J J, Svedberg E B, Ettedgui H, et al. Absence of ballistic magnetoresistance in Ni contacts controlled by an electrochemical feedback system. Phys Rev B, 2004, 70: 172406
[18]  Garcia N, Munoz M, Qian G G, et al. Ballistic magnetoresistance in a magnetic nanometer sized contact: An effective gate for spintronics. Appl Phys Lett, 2001, 79: 4550-4552

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133