全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

分子印迹膜修饰TiO2纳米管及其光催化降解盐酸四环素

, PP. 2965-2969

Keywords: 液相沉积,分子印迹,盐酸四环素,光催化

Full-Text   Cite this paper   Add to My Lib

Abstract:

以盐酸四环素为模板分子,采用液相沉积方法制备分子印迹膜修饰TiO2纳米管(MIP-TiO2),实现了高效光催化降解盐酸四环素的目的.利用扫描电子显微镜(ESEM)和X射线衍射(XRD)等测试技术对MIP-TiO2的结构与性能进行了表征.与TiO2纳米管相比,由于特异性结合位点的存在,印迹膜修饰的二氧化钛催化剂对盐酸四环素的吸附能力提高了1.6倍.在紫外光催化降解盐酸四环素的实验中,分子印迹膜修饰的TiO2纳米管表现出较高的光催化能力,一级动力学常数是TiO2纳米管的1.9倍.通过该方法可以提高对模板分子的吸附能力,增强TiO2纳米管的光催化能力,对光催化技术处理低浓度的废水提供了重要的指导意义.

References

[1]  Liu Z Y, Zhang X T, Nishimoto S, et al. Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ Sci Technol, 2008, 42: 8547-8551
[2]  Zheng R Y, Li L, Xie J L, et al. State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania. J Phys Chem C, 2008, 112: 15502-15509
[3]  Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications[J].Sol Energy Mater Sol Cells.2006, 90:2011-2075
[4]  Zhang J D, Zheng Y Q, Jiang G D, et al. Electrocatalytic evaluation of liquid phase deposited methylene blue/TiO2 hybrid films. Electrochem Comm, 2008, 10: 1038-1040
[5]  Quan X, Yang S G, Ruan X L, et al. Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol, 2005, 39: 3770-3775
[6]  Albu S P, Ghicov A, Macak J M, et al. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications[J].Nano Lett.2007, 7:1286-1289
[7]  Frank A J, Kopidakis N, Lagemaat J. Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties. Coord Chem Rev, 2004, 248: 1165-1179
[8]  Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6: 215-218
[9]  Xie C G, Zhang Z P, Wang D P, et al. Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal Chem, 2006, 78: 8339-8346
[10]  Sibrian-Vazquez M, Spivak A D. Molecular imprinting made easy. J Am Chem Soc, 2004, 126: 7827-7833
[11]  Vlatakis G, Andersson L I, Müller R, et al. Drug assay using antibody mimics made by molecular imprinting. Nature, 1993, 361: 645-647
[12]  Sellergren B. Imprinted polymers with memory for small molecules, proteins, or crystals. Angew Chem Int Ed, 2000, 39: 1031-1037
[13]  Percival C J, Stanley S, Galle M, et al. Molecular-imprinted, polymer-coated quartz crystal microbalances for the detection of terpenes. Anal Chem, 2001, 73: 4225-4228
[14]  Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev, 2000, 100: 2495-2504
[15]  Shen X T, Zhu L H, Liu G X, et al. Enhanced photocatalytic degradation and selective removal of nitrophenols by using surface molecular imprinted titania. Environ Sci Technol, 2008, 42: 1687-1692
[16]  Shen X T, Zhu L H, Li J, et al. Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity. Chem Commun, 2007, 11: 1163-1165
[17]  Lu N, Chen S, Wang H T, et al. Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activity. J Solid State Chem, 2008, 181: 2852-2858
[18]  Feng L, Liu Y J, Hu J M. Molecularly imprinted TiO2 thin film by liquid phase deposition for the determination of L-glutamic acid. Langmuir, 2004, 20: 1786-1790
[19]  Li C Y, Wang C F, Wang C H, et al. Development of a parathion sensor based on molecularly imprinted nano-TiO2 self-assembled film electrode. Sens Actuator B-Chem, 2006, 117: 166-171
[20]  Lahav M, Kharitonov A B, Katz O, et al. Tailored chemosensors for chloroaromatic acids using molecular imprinted TiO2 thin films on ion-sensitive field-effect transistors. Anal Chem, 2001, 73: 720-723
[21]  Niesen T P, De-Guire M R. Review: Deposition of ceramic thin films at low temperatures from aqueous solutions. Solid State Ion, 2002, 151: 61-68
[22]  Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95: 69-96
[23]  Zhao H M, Chen Y, Quan X, et al. Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation. Chinese Sci Bull, 2007, 52: 1456-1461
[24]  Sun B, Reddy E P, Smirniotis P G. Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis. Environ Sci Technol, 2005, 39: 6251-6259
[25]  Tachikawa T, Fujitsuka M, Majima T. Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts. J Phys Chem C, 2007, 111: 5259-5275

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133