全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

近期气候变化研究的一些最新进展

DOI: 10.1360/972011-913, PP. 3029-3040

Keywords: 辐射强迫,气溶胶,温室气体,海平面,南北极

Full-Text   Cite this paper   Add to My Lib

Abstract:

气候变化是当前国际上的热点问题之一,尤其是IPCC-AR4以来的全球气候及其影响如何变化更为引人瞩目.本文综述了近年在Science和Nature等国际杂志上刊登的涉及全球气候变化研究如辐射强迫、温室气体、气溶胶、海水和海平面、温度和降水、南北极地区等的最新研究成果和研究动态,对全球变化及其相关学科的研究以及即将发布的IPCC第五次评估报告具有重要的参考价值.

References

[1]  IPCC. Climate change 2007: The physical science basis. In: Solomon S, Qin D, Manning M, et al, eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007
[2]  Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon. Nat Geosci, 2008, 1: 221-227
[3]  Bowman D M J S, Balch J K, Artaxo P, et al. Fire in the earth system. Science, 2008, 324: 481-484
[4]  Bellouin N, Jones A, Haywood J, et al. Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. J Geophys Res, 2008, 113: D10205
[5]  Myhre G. Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science, 2009, 325: 187-190
[6]  Clement A C, Burgman R, Norris J R. Observational and model evidence for positive low-level cloud feedback. Science, 2009, 325: 460-464
[7]  Dessler A E. A determination of the cloud feedback from climate variations over the past decade. Science, 2010, 330: 1523-1527
[8]  Haigh J D. The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature, 1994, 370: 544-546
[9]  Haigh J D, Winning A R, Toumi R, et al. An influence of solar spectral variations on radiative forcing of climate. Nature, 2010, 467: 696-699
[10]  Wang K, Dickinson R E, Liang S. Clear sky visibility has decreased over land globally from 1973 to 2007. Science, 2009, 323: 1468-1470
[11]  Ohara T, Akimoto H, Kurokawa J, et al. An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmos Chem Phys, 2007, 7: 4419-4444
[12]  Lacis A A, Schmidt G A, Rind D, et al. Atmospheric CO2: Principal control knob governing Earth’s temperature. Science, 2010, 330: 356-359
[13]  Meinshausen M, Meinshausen N, Hare W, et al. Greenhouse-gas emission targets for limiting global warming to 2℃. Nature, 2009, 458: 1158-1163
[14]  Canadell J G, Le Q C, Raupach M R, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA, 2007, 104: 18866-18870
[15]  Matthews H D. Effect of CO2 fertilization uncertainty on future climate change in a coupled climate-carbon model. Glob Change Biol, 2007, 13: 1068-1078
[16]  Allen M R, Frame D J, Huntingford C, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 2009, 458: 1163-1166
[17]  Caldeira K, Kasting J F. Insensitivity of global warming potentials to carbon dioxide emissions scenarios. Nature, 1993, 366: 251-253
[18]  Matthews H D, Gillett N P, Stott P A, et al. The proportionality of global warming to cumulative carbon emissions. Nature, 2009, 459: 829-833
[19]  Notz D. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss. Proc Natl Acad Sci USA, 2009, 106: 20590-20595
[20]  Amstrup S C, DeWeaver E T, Douglas D C, et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature, 2010, 468: 955-960
[21]  Rohs S, Schiller C, Riese M, et al. Long-term changes of methane and hydrogen in the stratosphere in the period 1978-2003. J Geophys Res, 2006, 111: D14315
[22]  Smith C A, Haigh J D, Toumi R. Radiative forcing due to trends in stratospheric water vapour. Geophys Res Lett, 2001, 28: 179-182
[23]  Solomon S, Rosenlof K H, Portmann R W, et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 2010, 327: 1219-1223
[24]  Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 2000, 407: 859-869
[25]  Yu J, Broecker W S, Elderfield H, et al. Loss of carbon from the deep sea since the Last Glacial Maximum. Science, 2010, 330: 1084-1087
[26]  Anderson D M, Archer D. Glacial-intergacial stability of ocean pH inferred from foraminifer dissolution rates. Nature, 2002, 416: 70-73
[27]  Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 2009, 323: 1443-1448
[28]  Zimov S A, Schuur E A G, Chapin F S. Permafrost and the global carbon budget. Science, 2006, 312: 1612-1613
[29]  Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 2008, 451: 289-292
[30]  Schuur E A G, Vogel J G, Crummer K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 2009, 459: 556-559
[31]  Thompson D W J, Kennedy J J, Wallace J M, et al. A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 2008, 453: 646-649
[32]  Thompson D W J, Wallace J M, Kennedy J J, et al. An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature, 2010, 467: 444-447
[33]  Zhang X, Zwiers F W, Hegerl G C, et al. Detection of human influence on twentieth-century precipitation trends. Nature, 2007, 448: 461-465
[34]  Allan R P, Soden B J. Atmospheric warming and the amplification of precipitation extremes. Science, 2008, 321: 1482-1484
[35]  Levitus S, Antonov J I, Wang J, et al. Anthropogenic warming of Earth’s climate system. Science, 2001, 292: 267-270
[36]  Domingues C M, Church J A, White N J, et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 2008, 453: 1090-1093
[37]  Levitus S, Antonov J, Boyer T P, et al. Warming of the world ocean. Science, 2000, 287: 2225-2229
[38]  Barnett T P, Pierce D W, AchutaRao K M, et al. Penetration of human-induced warming into the world’s oceans. Science, 2005, 309: 284-287
[39]  Lyman J M, Good S A, Gouretski V V, et al. Robust warming of the global upper ocean. Nature, 2010, 465: 334-337
[40]  Fukasawa M, Freeland H, Perkin R, et al. Bottom water warming in the North Pacific Ocean. Nature, 2004, 427: 825-827
[41]  Shuhei M, Toshiyuki A, Nozomi S, et al. Simulated rapid warming of abyssal north Pacific waters. Science, 2010, 329: 319-322
[42]  Chao B F, Wu Y H, Li Y S. Impact of artificial reservoir water impoundment on global sea level. Science, 2008, 320: 212-214
[43]  Pfeffer W T, Harper J T, O’Neel S. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 2008, 321: 1340-1343
[44]  Scherer R P, Aldahan A, Tulaczyk S, et al. Pleistocene collapse of the West Antarctic ice sheet. Science, 1998, 281: 82-85
[45]  Fox D. Freeze-dried findings support a tale of two ancient climates. Science, 2008, 320: 1152-1154
[46]  Tol R S J, Bohn M, Downing T E, et al. Adaptation to five metres of sea level rise. J Risk Res, 2006, 9: 467-482
[47]  Steig E J, Schneider D P, Rutherford S D, et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 2009, 457: 459-462
[48]  Alexeev V A, Langen P L, Bates J R. Polar amplification of surface warming on an aquaplanet in “ghost forcings” experiments without sea ice feedbacks. Clim Dyn, 2005, 24: 655-666
[49]  Chapman W L, Walsh J E. Simulation of Arctic temperature and pressure by global coupled models. J Clim, 2007, 20: 609-632
[50]  Hansen J, Sato M, Ruedy R, et al. Dangerous human-made interference with climate: A GISS modelE study. Atmos Chem Phys, 2007, 7: 2287-2312
[51]  Gillett N P, Stone D A, Stott P A, et al. Attribution of polar warming to human influence. Nat Geosci, 2008, 1: 750-754
[52]  Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover. Geophys Res Lett, 2008, 35: L01703
[53]  Graversen R G, Mauritsen T, Tjernstrom M, et al. Vertical structure of recent Arctic warming. Nature, 2008, 451: 53-56
[54]  Boe J, Hall A, Qu X. September sea ice cover in the Arctic Ocean projected to vanish by 2100. Nat Geosci, 2009, 2: 341-343
[55]  Rune G G, Thorsten M, Michael T, et al. Vertical structure of recent Arctic warming. Nature, 2008, 451: 53-56
[56]  Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 2010, 464: 1334-1336
[57]  Overpeck J, Hughen K, Hardy D, et al. Arctic environmental change of the last four centuries. Science, 1997, 278: 1251-1256
[58]  Moberg A, Sonechkin D M, Holmgren K, et al. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 2005, 433: 613-617
[59]  Kaufman D S, Schneider D P, McKay N P, et al. Recent warming reverses long-term Arctic cooling. Science, 2009, 325: 1236-1239
[60]  Stine R, Huybers P, Fung I Y. Changes in the phase of the annual cycle of surface temperature. Nature, 2009, 457: 435-441
[61]  Wild M, Gilgen H, Roesch A, et al. From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science, 2005, 308: 847-850
[62]  Bamber J L, Riva R E M, Vermeersen B L A, et al. Reassessment of the potential sea-level rise from a collapse of the west Antarctic ice sheet. Science, 2009, 324: 901-903
[63]  Mitrovica J X, Gomez N, Clark P U. The sea-level fingerprint of West Antarctic collapse. Science, 2009, 323: 753
[64]  Meier M F, Dyurgerov M B, Rick U K, et al. Glaciers dominate eustatic sea-level rise in the 21st century. Science, 2007, 317: 1064-1067
[65]  Pritchard H D, Arthern R J, Vaughan D G, et al. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 2009, 461: 971-975
[66]  Joughin I, Das S B, King M A, et al. Seasonal speedup along the western flank of the Greenland ice sheet. Science, 2008, 320: 781-783
[67]  Zwally H J, Abdalati W, Herring T, et al. Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 2002, 297: 218-222
[68]  van de Wal R S W, Boot W, van den Broeke M R, et al. Large and rapid melt-induced velocity changes in the ablation zone of the Greenland ice sheet. Science, 2008, 321: 111-113
[69]  Rignot E, Kanagaratnam P. Changes in the velocity structure of the Greenland ice sheet. Science, 2006, 311: 986-990
[70]  Bartholomaus T C, Anderson R S, Anderson S P. Response of glacier basal motion to transient water storage. Nature Geosci, 2008, 1: 33-37
[71]  Schoof C. Ice-sheet acceleration driven by melt supply variability. Nature, 2010, 468: 803-806
[72]  Kamb B, Raymond C F, Harrison W D, et al. Glacier surgemechanism: 1982-1983 surge of Variegated Glacier, Alaska. Science, 1985, 227: 469-479
[73]  Das S B, Joughin I, Behn M D. et al. Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science, 2008, 320: 778-781
[74]  Velicogna I, Wahr J. Acceleration of Greenland ice mass loss in spring 2004. Nature, 2006, 443: 329-331
[75]  Krabill W, Abdalati W, Frederick E, et al. Greenland ice sheet: High-elevation balance and peripheral thinning. Science, 2000, 289: 428-430
[76]  Rignot E, Box J E, Burgess E, et al. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys Res Lett, 2008, 35: L20502
[77]  van den Broeke M R, Bamber J, Ettema J, et al. Partitioning recent Greenland mass loss. Science, 2009, 326: 984-986
[78]  Thompson D W J, Solomon S. Interpretation of recent Southern Hemisphere climate change. Science, 2002, 296: 895-899
[79]  Min S-K, Zhang X, Zwiers F. Human-induced Arctic moistening. Science, 2008, 320: 518-520
[80]  Peterson B J, McClelland J, Curry R, et al. Trajectory shifts in the Arctic and Subarctic freshwater cycle. Science, 2006, 313: 1061-1066
[81]  Bender M A, Knutson T R, Tuleya R E, et al. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 2010, 327: 454-458
[82]  Immerzeel W W, van B L P H, Bierkens M F P. Climate change will affect the Asian water towers. Science, 2010, 328: 1382-1385

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133