全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

磁化率各向异性揭示的日本海Ulleung盆地浊流沉积和氧化-还原条件下的底流演化

, PP. 3098-3110

Keywords: Ulleung,海盆,磁化率各向异性,磁化率椭球体,早期成岩作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

日本海Ulleung海盆南部陆坡岩芯7.31m以上的磁化率椭球体长、中轴正交分布在水平投影面上,短轴近似垂直分布.7.31m以下,磁化率椭球体3个特征轴杂乱分布,此时形状因子也显示异常高值,表明下部沉积物的原始结构已经被破坏.该界线与X射线影像吻合.已有测年结果表明上部7.31m的年龄为48kaBP.48kaBP以来日本海南部沉积物磁各向异性不发育,各向异性度为1~1.08,与磁面理显著相关,与磁线理不相关,说明沉积物磁性矿物颗粒形状或排列方式以扁圆状为主,是典型的原始沉积组构.综合磁性矿物组成、粒度和含量变化特征,确定了至少5个氧化-还原层偶,还原层的磁铁矿有遭受溶解的迹象,但磁学性质保留了绝大部分原始信号.磁化率椭球体的方向和各向异性度在千年尺度气候期内发生了相应的变化.DO1-BA-YD事件发生时短轴明显向不同方向倾斜,指示此时水动力的增强和方向多变;此时正是西太平洋海面急剧上升期和全球冰融水MWP1A事件发生时;其他时段内的长轴或短轴倾斜指示底流方向为NE-SW或NW-SE,而最近4.5kaBP以来短轴向NE方向的倾斜与实测东-北东方向底流一致.磁化率各向异性对气候变化的响应说明,早期成岩作用对磁信号的影响有限,磁化率椭球体记录了底流方向和强度在末次冰期-冰消期过程中的频繁变化.

References

[1]  4 Ellwood B B. Application of AMS method as an indicator of bottom water flow direction. Mar Geol, 1980, 34: M83-M90??
[2]  6 Liu B, Saito Y, Yamazaki T, et al. Anisotropy of magnetic susceptibility (AMS) characteristics of tide-influenced sediments in the late Pleistocene- Holocene Changjiang incised-Valley Fill, China. J Coast Res, 2005, 21: 1031-1041
[3]  8 葛淑兰, 石学法, 杨刚, 等. 西菲律宾海780 ka 以来气候变化的岩石磁学记录: 基于地磁场相对强度指示的年龄框架. 第四纪研究, 2007, 27: 1040-1052
[4]  16 Roberts A P, Turner G M. Diagenetic formation of ferromagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth Planet Sci Lett, 1993, 115: 257-273??
[5]  17 Liu J, Zhu R, Roberts A P, et al. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait. J Geophys Res, 2004, 109: B03103, doi: 10.1029/2003JB002813
[6]  23 Copons R, Parés J M, Dinarés-Turell J, et al. Sampling induced AMS in soft sediments: A case study in Holocene (glaciolacustrine rhythmites from Lake Barrancs (central Pyrenees, Spain). Phys Chem Earth, 1997, 22: 137-141??
[7]  29 Manley P, Caress D. Mudwaves on the Gardar Sediment Drift, NE Atlantic. Paleoceanography, 1994, 9: 973-988??
[8]  30 Kanamatsu T, Ohno M, Acton G, et al. Rock magnetic properties of the Gardar Drift sedimentary sequence, Site IODPU1314, North Atlantic: Implication for bottom current change through the mid-Pleistocene. Mar Geol, 2009, 265: 31-39
[9]  32 Senjyu T, Shin H, Yoon J, et al. Deep flow field in the Japan/East Sea as deduced from direct current measurements. Deep-Sea Res II, 2005, 52: 1726-1741??
[10]  1 Mathé P E, Rochette P, Vandamme D, et al. Volumetric changes in weathered profiles: Iso-element mass balance method questioned by magnetic fabric. Earth Planet Sci Lett, 1999, 167: 255-267??
[11]  2 Rosenbaum J, Reynolds R, Smoot J, et al. Anisotropy of magnetic susceptibility as a tool for recognizing core deformation: Reevaluation of the paleomagnetic record of Pleistocene sediments from drill hole OL-92, Owens Lake, California. Earth Planet Sci Lett, 2000, 178: 415-424??
[12]  3 Housen B A, Kanamatsu T. Magnetic fabrics from the Costa Rica margin: Sediment deformation during the initial dewatering and underplating process. Earth Planet Sci Lett, 2003, 206: 215-228??
[13]  5 Ledbetter M T, Ellwood B B. Spatial and temporal changes in bottom-water velocity and direction from analysis of particle size and alignment in deep-sea sediment. Mar Geol, 1980, 38: 245-261??
[14]  7 Kissel C, Laj C, Mazaud A, et al. Magnetic anisotropy and environmental changes in two sedimentary cores from the Norwegian Sea and the North Atlantic. Earth Planet Sci Lett, 1998, 164: 617-626??
[15]  9 Parés J M, Hassold N J C, Rea D K, et al. Paleocurrent directions from paleomagnetic reorientation of magnetic fabrics in deep-sea sediments at the Antarctic Peninsula Pacific margin (ODP Sites 1095, 1101). Mar Geol, 2007, 242: 261-269
[16]  10 Aubourg C, Oufi O. Coring-induced magnetic fabric in piston cores from the western Mediterranean. In: Zahn R, Comas M C, Klaus A, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 1999, 161: 129-136
[17]  11 Lee H J, Chough S K, Yoon S H. Slope-stability change from late Pleistocene to Holocene in the Ulleung Basin, East Sea (Japan Sea). Sediment Geol, 1996, 104: 39-51??
[18]  12 Yamazaki T, Abdeldayem A L, Ikehara K. Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30000 years. Earth Planets Space, 2003, 55: 327-340
[19]  13 Hayashida A, Hattori S, Oda H. Diagenetic modification of magnetic properties observed in a piston core (MD01-2407) from the Oki Ridge, Japan Sea. Paleogeogr Palaeoclimatol Palaeoecol, 2007, 247: 65-73??
[20]  14 Karlin R. Magnetic mineral diagenesis in suboxic sediments at Bettis Site W-N, NE Pacific Ocean. J Geophys Res, 1990, 95: 4421-4436??
[21]  15 Leslie B W, Hammond D E, Berelson W M, et al. Diagenesis in anoxic sediments from the California continental borderland and its influence on iron, sulfur and magnetite behavior. J Geophys Res, 1990, 95: 4453-4470??
[22]  18 葛淑兰, 石学法, 吴永华, 等. 冲绳海槽北部CSH 长岩芯的岩石磁学表现及早期成岩作用的影响. 海洋学报, 2005, 27: 56-64
[23]  19 刘焱光, 石学法, SUK Bong-Chool, 等. 48 ka 以来日本海Ulleung 海盆南部的海洋沉积环境演化. 海洋学报, 2010, 32: 94-106
[24]  20 邹建军, 石学法, 刘焱光, 等. 末次冰期以来日本海陆源沉积的地球化学记录及其对海平面和气候变化的响应. 海洋地质与第四纪地 质, 2010, 30: 75-86
[25]  21 邹建军, 石学法, 刘焱光, 等. 48 ka 以来日本海古生产力和古氧化还原环境变化的地球化学记录. 海洋学报, 2010, 32: 98-109
[26]  22 Riedinger N, Pfeifer K, Kasten S, et al. Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate. Geochim Cosmochim Acta, 2005, 69, 16: 4117-4126
[27]  24 Stuiver M, Pieter M. Grootes. GISP2 oxygen isotope ratios. Quat Res, 2000, 53: 277-284
[28]  25 Horozai S, Lee G H, Yi B Y, et al. Seismic indicators of gas hydrate and associated gas in the Ulleung Basin, East Sea (Japan Sea) and implications of heat flows derived from depths of the bottom-simulating reflector. Mar Geol, 2009, 258: 126-138??
[29]  26 Liu B, Saito Y, Yamazaki T, et al. Paleocurrent analysis for the Late Pleistocene-Holocene incised-valley fill of the Yangtz delta, China by using anisotropy of magnetic susceptibility data. Mar Geol, 2001, 176: 175-189??
[30]  27 Veloso E E, Anma R, Oba T, et al. Paleocurrent patterns of the sedimentary sequence of the Taitao ophiolite constrained by anisotropy of magnetic susceptibility and paleomagnetic analyses. Sediment Geol, 2007, 201: 446-460??
[31]  28 Tarling D H, Hrouda F. The Magnetic Anisotropy of Rocks. London: Chapman & Hall, 1993
[32]  31 Liu J P. Post-glacial sedimentation on a river-dominated epicontinental shelf: The Yellow Sea example. Doctor Dissertation. Williamsburg: The College of William and Mary, 2001. 151

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133