Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickend lower continental crust. Earth Planet Sci Lett, 2011, 303: 251-266
De Sigoyer J, Chavagnac V, Blichert T J, et al. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 2000, 28: 487-490
[8]
Kaneko Y, Katayama I, Yamamoto H, et al. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate andsubduction angle of the Indian continental crust beneath Asia. J Metamorph Geol, 2003, 21: 589-599
[9]
Parrish R R, Gough S J, Searle M P, et al. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 2006, 34: 989-992
[10]
Zhang H F, Harris N, Parrish R, et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett, 2004, 228: 195-212
[11]
张宏飞, Harris N, Parrish R, 等. 北喜马拉雅萨迦穹窿中苦堆和萨迦淡色花岗岩的U-Pb 年龄及其地质意义[J].科学通报.2004, 49:2090-2094??浏览
Harris N, Massey J. Decompression and anatexis of Himalayan metapelites. Tectonics, 1994, 13: 1537-1546
[14]
Harris N, Ayres M, Massey J. Geochemistry of granitic melts produced during the incongruent melting of muscovite-implications for the extraction of Himalayan leucogranite magmas. J Geophys Res, 1995, 100: 15767-15777
[15]
Harrison T M, Oscar M L, Marty G, et al. New insight into the origin of two contrasting Himalayan granite belts. Geology, 1997, 25: 899-902
[16]
Harrison T M, Grove M, Lovera O M, et al. The origin of Himalayan anatexis and inverted metamorphism: Models and constraints. J Asian Earth Sci, 1999, 17: 755-772
[17]
Searle M P, Szulc A G. Channel Flow and ductile extrusion of the High Himalayan slab, Kangchenjunga-Darjeeling profile, Sikkim Himalaya. J Asian Earth Sci, 2005, 25: 173-185
[18]
Aoya M, Wallis S R, Terada K, et al. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 2005, 33: 853-856
[19]
King J, Harris N, Argles T, et al. The contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geol Soc Amer Bull, 2011, 123: 218-239
[20]
Lee J, Hacker B R, Dinklage W S, et al. Evolution of the Kangmar dome, southern Tibet: Structural, petrologic and thermochronologic constraints. Tectonics, 2000, 19: 872-895
[21]
Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet Sci Lett, 2007, 255: 70-84
[22]
Quigley M C, Yu L J, Gregory C, et al. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet. Tectonophysics, 2008, 446: 97-113
[23]
Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology, 2007, 35: 45-48
Zeng L S, Gao L E, Xie K J, et al. Concurrence of Mid-Miocene high Sr/Y granite and leucogranite in the Yardoi gneiss dome, Tethyan Himalaya, Southern Tibet. Geochim Cosmochim Acta, 2011
Xu Z Q, Zeng L S, Liu F L, et al. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane. Geol Soc Am Spec Paper, 2006, 403: 93-113
Liu F L, Gerdes A, Liou J G, et al. Unique coesite-bearing zircon from allanite-bearing gneisses: U-Pb, REE and Lu-Hf properties and implications for the evolution of the Sulu UHP terrane, China. Eur J Mineral, 2009, 21: 1225-1250
[32]
Harold S, Andrew T, Carlos Z, et al. Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand. Chem Geol, 2010, 273: 91-110
[33]
Garzanti E. Comment on “When and where did India and Asia collide?” by Jonathan C A, Jason R A, and Aileen M D. J Geophys Res, 2008, 113: B04411
[34]
Chen J, Huang B, Sun L. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 2010, 489: 189-209
[35]
Dupont-Nivet G, Lippert P C, Van Hinsbergen D J, et al. Paleolatitude and age of the Indo-Asia collision: Paleomagnetic constraints. Geophys J Int, 2010, 182: 1189-1198
[36]
Liebke U, Appel E, Ding L, et al. Position of the Lhasa terrane prior to India-Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou Basin: Constraints on the age of collision and post-collisional shortening within the Tibetan Plateau. Geophys J Int, 2010, 182: 1199-1215
Burg J P, Guiraud M, Chen G M, et al. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China). Earth Planet Sci Lett, 1984, 69: 391-400
[39]
Hodges K V. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Amer Bull, 2000, 112: 324-350
[40]
Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 2000, 28: 211-280
[41]
Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 2001, 414: 738-742
Rowley D B. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet Sci Lett, 1996, 145: 1-13
[44]
Ding L, Kapp P, Zhong D, et al. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. J Petrol, 2003, 44: 1833-1865
[45]
Zhu B, Kidd W S F, Rowley D B, et al. Age of initiation of the India-Asia collision in the east-central Himalaya. J Geol, 2005, 113: 265-285
[46]
Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southernTibet. Chem Geol, 2008, 250: 49-67
[47]
Lippert P C, Van Hinsbergen D J, Dupont Nivet G, et al. Consensus on the Eocene latitude of Lhasa and the age of the Tethyan Himalaya- Asia Collision? In: Abstract T33F-03 presented at 2010 Fall Meeting. AGU, 2010. 13-17
[48]
Ding L, Kapp P, Wan X. Paleocene-Eocene record of ophiolite obduction and Initial India-Asia collision, south-central Tibet. Tectonics, 2005, 24: TC3001
[49]
Aikman A B, Harrison T M, Ding L. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett, 2008, 274: 14-23
Guillot S, Le Fort P. Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, 1995, 35: 221-234
[53]
Ayres M, Harris N, Vance D. Possible constraints on anatectic melt residence times from accessory mineral dissolution rates: An example from Himalayan leucogranites. Mineral Mag, 1997, 61: 29-36
[54]
Breton N L, Thompson A B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol, 1998, 99: 226-237
[55]
Pati?o Douce A E, Harris N. Experimental constraints on Himalayan Anatexis. J Petrol, 1998, 39: 689-710
[56]
杨晓松, 金振民, Huenges E, 等. 喜马拉雅造山带下地壳麻粒岩成因: 来自高温高压实验的证据[J].科学通报.2001, 46:2025-2030??浏览
[57]
Knesel K M, Davidson J P. Insight into collisional magmatism from isotopic fingerprints of melting reactions. Science, 2002, 296: 2206-2208
[58]
Le Fort P. Manaslu leucogranite: A collision signature of the Himalaya a model for its genesis and emplacement. J Geophys Res, 1981, 86: 10545-10568
[59]
Debon F, Le Fort P, Sheppard S, et al. The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal Section. J Petrol, 1986, 27: 219-250
[60]
Sch?rer U, Xu R, Allegre C. U-(Th)-Pb systematics and ages of Himalayan leucogranites, south Tibet. Earth Planet Sci Lett, 1986, 77: 35-48
[61]
Daniel C, Vidal P, Fernandez A, et al. Isotopic study of the Manaslu granite (Himalaya, Nepal): Inferences of the age and source of Himalayan leucogranites. Contrib Mineral Petrol, 1987, 96: 78-92
[62]
Le Fort P, Cuney M, Deniel C, et al. Crustal generation of the Himalayan leucogranites. Tectonophysics, 1987, 134: 39-57
[63]
Inger S, Harris N. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J Petrol, 1993, 34: 345-368
[64]
Searle M P, Parrish R R, Hodges K V, et al. Shisha Pangma leucogranite, south Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. J Geol, 1997, 105: 295-317
[65]
Kusky T M, Abdelsalam M, Stern R J, et al. Evolution of the east African and related orogens, and the assembly of the Gonwana. Precambrian Res, 2003, 123: 81-85
O’Brien P J, Zotov N, Law R, et al. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 2001, 29: 435-438
[69]
Auzanneau E, Vielzeuf D, Schmidt M W. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 2006, 152: 125-148
[70]
Hermann J, Spandler C J. Sediment melts at sub-arc depths: An experimental study. J Petrol, 2008, 49: 717-740
[71]
Yang J J, Powell R. Calculated Phase Relations in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O with Applications to UHP Eclogites and Whiteschists. J Petrol, 2006, 47: 2047-2071
[72]
Korsakov A V, Hermann J. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett, 2006, 241: 104-118
Chen J F, Xie Z, Li H M, et al. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochem J, 2003, 37: 35-46
[76]
Wallis S, Tsuboi M, Suzuki K, et al. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 2005, 33: 129-132
[77]
Liu F L, Robinson P T, Gerdes A, et al. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the North Sulu UHP terrane in China: Constraints on the timing and nature of partial melting. Lithos, 2010, 117: 247-268
[78]
Guo L, Zhang H F, Harris N, et al. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis: Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex. Gondwana Res, 2011, doi: 10.1016/j.gr.2011.03.002
[79]
Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett, 2011, 301: 241-255
Davis J H, von Blanckenburg F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett, 1995, 129: 85-102
[82]
Chemenda A I, Burg J P, Mattauer M. Evolutionary model of the Himalaya-Tibet system: Geopoem based on new modelling, geological and geophysical data. Earth Plant Sci Lett, 2000, 174: 397-409
[83]
Kohn M J, Parkinson C D. Petrologic case for Eocene slab break off during the Indo-Asian collision. Geology, 2002, 30: 591-594