全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

北喜马拉雅片麻岩穹窿始新世高级变质和深熔作用的厘定

, PP. 3078-3090

Keywords: 西藏,喜马拉雅造山带,北喜马拉雅片麻岩穹窿,高级变质作用,深熔作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

厘定喜马拉雅造山带早期变质和深熔作用的时限和性质有助于理解大型碰撞造山带早期下地壳物质的物理和化学行为.雅拉香波穹窿位于北喜马拉雅穹窿的最东端,穹窿内发育3种地质产状、矿物组成和地球化学特征不同的角闪岩和多种片麻岩.SHRIMP锆石年代学测试结果表明石榴角闪岩和黑云母花岗质片麻岩的近峰期变质作用分别发生在45.0±1.0和47.6±1.8Ma,比石榴角闪岩部分熔融的时间(43.5±1.3Ma)早2~4Ma.结合已有的研究结果,在北喜马拉雅带内,榴辉岩相变质作用发生在大约55Ma,高角闪岩相-麻粒岩相变质作用发生在45~47Ma,与增厚地壳条件下部分熔融相关的变质作用发生在43.5±1.3Ma,同时形成具有高Sr/Y比值的二云母花岗岩.位于北喜马拉雅带的高级变质岩代表了俯冲印度大陆地壳的前锋,不同位置保存的变质历史存在明显的差异.在大型碰撞造山带内,地壳缩短增厚的过程中,易熔组分可发生部分熔融,形成高Na/K比和Sr/Y比的花岗质熔体,明显不同于快速折返-减压部分熔融作用形成的熔体.

References

[1]  Aitchison J C, Ali J R, Davis A M. When and where did India and Asia collide? J Geophys Res, 2007, 112: B05423
[2]  曾令森, 刘静, 高利娥, 等. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义[J].科学通报.2009, 54:373-381??浏览
[3]  Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickend lower continental crust. Earth Planet Sci Lett, 2011, 303: 251-266
[4]  高利娥, 曾令森, 刘静, 等. 藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义. 岩石学报, 2009, 25: 2289-2302
[5]  高利娥, 曾令森, 胡古月. 藏南确当高Sr/Y 比值二云母花岗岩的形成机制及其构造动力学意义. 地质通报, 2010, 29: 214-226
[6]  谢克家, 曾令森, 刘静, 等. 西藏南部晚始新世打拉埃达克质花岗岩及其构造动力学意义. 岩石学报, 2010, 26: 1016-1026
[7]  De Sigoyer J, Chavagnac V, Blichert T J, et al. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 2000, 28: 487-490
[8]  Kaneko Y, Katayama I, Yamamoto H, et al. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate andsubduction angle of the Indian continental crust beneath Asia. J Metamorph Geol, 2003, 21: 589-599
[9]  Parrish R R, Gough S J, Searle M P, et al. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 2006, 34: 989-992
[10]  Zhang H F, Harris N, Parrish R, et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett, 2004, 228: 195-212
[11]  张宏飞, Harris N, Parrish R, 等. 北喜马拉雅萨迦穹窿中苦堆和萨迦淡色花岗岩的U-Pb 年龄及其地质意义[J].科学通报.2004, 49:2090-2094??浏览
[12]  张宏飞, Harris N, Parrish R, 等. 北喜马拉雅淡色花岗岩地球化学: 区域对比、岩石成因及其构造意义. 地球科学, 2005, 30: 275-288
[13]  Harris N, Massey J. Decompression and anatexis of Himalayan metapelites. Tectonics, 1994, 13: 1537-1546
[14]  Harris N, Ayres M, Massey J. Geochemistry of granitic melts produced during the incongruent melting of muscovite-implications for the extraction of Himalayan leucogranite magmas. J Geophys Res, 1995, 100: 15767-15777
[15]  Harrison T M, Oscar M L, Marty G, et al. New insight into the origin of two contrasting Himalayan granite belts. Geology, 1997, 25: 899-902
[16]  Harrison T M, Grove M, Lovera O M, et al. The origin of Himalayan anatexis and inverted metamorphism: Models and constraints. J Asian Earth Sci, 1999, 17: 755-772
[17]  Searle M P, Szulc A G. Channel Flow and ductile extrusion of the High Himalayan slab, Kangchenjunga-Darjeeling profile, Sikkim Himalaya. J Asian Earth Sci, 2005, 25: 173-185
[18]  Aoya M, Wallis S R, Terada K, et al. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 2005, 33: 853-856
[19]  King J, Harris N, Argles T, et al. The contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geol Soc Amer Bull, 2011, 123: 218-239
[20]  Lee J, Hacker B R, Dinklage W S, et al. Evolution of the Kangmar dome, southern Tibet: Structural, petrologic and thermochronologic constraints. Tectonics, 2000, 19: 872-895
[21]  Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet Sci Lett, 2007, 255: 70-84
[22]  Quigley M C, Yu L J, Gregory C, et al. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet. Tectonophysics, 2008, 446: 97-113
[23]  Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology, 2007, 35: 45-48
[24]  张进江, 郭磊, 张波. 北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征. 地质科学, 2007, 42: 16-30
[25]  戚学祥, 曾令森, 孟祥金, 等. 特提斯喜马拉雅奴拉花岗岩的锆石SHRIMP U-Pb 定年及其地质意义. 岩石学报, 2008, 24: 1501-1508
[26]  Zeng L S, Gao L E, Xie K J, et al. Concurrence of Mid-Miocene high Sr/Y granite and leucogranite in the Yardoi gneiss dome, Tethyan Himalaya, Southern Tibet. Geochim Cosmochim Acta, 2011
[27]  高利娥. 藏南雅拉香波片麻岩穹窿的变质作用以其深熔事件的研究. 硕士学位论文. 北京: 中国地质科学院, 2010
[28]  曾令森, 高利娥, 于俊杰, 等. 苏鲁仰口超高压岩石SHRIMP 锆石U/Pb 定年与部分熔融时限. 岩石学报, 2011, 27: 1085-1094
[29]  Xu Z Q, Zeng L S, Liu F L, et al. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane. Geol Soc Am Spec Paper, 2006, 403: 93-113
[30]  郑永飞. 超高压变质与大陆碰撞研究进展: 以大别-苏鲁造山带为例[J].科学通报.2008, 53:2129-2152??浏览
[31]  Liu F L, Gerdes A, Liou J G, et al. Unique coesite-bearing zircon from allanite-bearing gneisses: U-Pb, REE and Lu-Hf properties and implications for the evolution of the Sulu UHP terrane, China. Eur J Mineral, 2009, 21: 1225-1250
[32]  Harold S, Andrew T, Carlos Z, et al. Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand. Chem Geol, 2010, 273: 91-110
[33]  Garzanti E. Comment on “When and where did India and Asia collide?” by Jonathan C A, Jason R A, and Aileen M D. J Geophys Res, 2008, 113: B04411
[34]  Chen J, Huang B, Sun L. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 2010, 489: 189-209
[35]  Dupont-Nivet G, Lippert P C, Van Hinsbergen D J, et al. Paleolatitude and age of the Indo-Asia collision: Paleomagnetic constraints. Geophys J Int, 2010, 182: 1189-1198
[36]  Liebke U, Appel E, Ding L, et al. Position of the Lhasa terrane prior to India-Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou Basin: Constraints on the age of collision and post-collisional shortening within the Tibetan Plateau. Geophys J Int, 2010, 182: 1199-1215
[37]  谢克家, 曾令森, 刘静, 等. 藏南昂仁县桑桑地区林子宗火山岩的形成时代和地球化学特征. 地质通报, 2011, 30: 1339-1352
[38]  Burg J P, Guiraud M, Chen G M, et al. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China). Earth Planet Sci Lett, 1984, 69: 391-400
[39]  Hodges K V. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Amer Bull, 2000, 112: 324-350
[40]  Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 2000, 28: 211-280
[41]  Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 2001, 414: 738-742
[42]  许志琴, 杨经绥, 梁凤华, 等. 喜马拉雅地体的泛非——早古生代造山事件年龄记录. 岩石学报, 2005, 21: 1-12
[43]  Rowley D B. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet Sci Lett, 1996, 145: 1-13
[44]  Ding L, Kapp P, Zhong D, et al. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. J Petrol, 2003, 44: 1833-1865
[45]  Zhu B, Kidd W S F, Rowley D B, et al. Age of initiation of the India-Asia collision in the east-central Himalaya. J Geol, 2005, 113: 265-285
[46]  Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southernTibet. Chem Geol, 2008, 250: 49-67
[47]  Lippert P C, Van Hinsbergen D J, Dupont Nivet G, et al. Consensus on the Eocene latitude of Lhasa and the age of the Tethyan Himalaya- Asia Collision? In: Abstract T33F-03 presented at 2010 Fall Meeting. AGU, 2010. 13-17
[48]  Ding L, Kapp P, Wan X. Paleocene-Eocene record of ophiolite obduction and Initial India-Asia collision, south-central Tibet. Tectonics, 2005, 24: TC3001
[49]  Aikman A B, Harrison T M, Ding L. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett, 2008, 274: 14-23
[50]  曾令森, 梁凤华, 许志琴, 等. 喜马拉雅造山带变泥质岩系及其地球化学特征. 岩石学报, 2008, 24: 1517-1527
[51]  杨雄英, 张进江, 戚国伟, 等. 吉隆盆地周缘构造变形特征及藏南拆离系启动年龄. 中国科学D 辑: 地球科学, 2009, 39: 1128-1139
[52]  Guillot S, Le Fort P. Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, 1995, 35: 221-234
[53]  Ayres M, Harris N, Vance D. Possible constraints on anatectic melt residence times from accessory mineral dissolution rates: An example from Himalayan leucogranites. Mineral Mag, 1997, 61: 29-36
[54]  Breton N L, Thompson A B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol, 1998, 99: 226-237
[55]  Pati?o Douce A E, Harris N. Experimental constraints on Himalayan Anatexis. J Petrol, 1998, 39: 689-710
[56]  杨晓松, 金振民, Huenges E, 等. 喜马拉雅造山带下地壳麻粒岩成因: 来自高温高压实验的证据[J].科学通报.2001, 46:2025-2030??浏览
[57]  Knesel K M, Davidson J P. Insight into collisional magmatism from isotopic fingerprints of melting reactions. Science, 2002, 296: 2206-2208
[58]  Le Fort P. Manaslu leucogranite: A collision signature of the Himalaya a model for its genesis and emplacement. J Geophys Res, 1981, 86: 10545-10568
[59]  Debon F, Le Fort P, Sheppard S, et al. The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal Section. J Petrol, 1986, 27: 219-250
[60]  Sch?rer U, Xu R, Allegre C. U-(Th)-Pb systematics and ages of Himalayan leucogranites, south Tibet. Earth Planet Sci Lett, 1986, 77: 35-48
[61]  Daniel C, Vidal P, Fernandez A, et al. Isotopic study of the Manaslu granite (Himalaya, Nepal): Inferences of the age and source of Himalayan leucogranites. Contrib Mineral Petrol, 1987, 96: 78-92
[62]  Le Fort P, Cuney M, Deniel C, et al. Crustal generation of the Himalayan leucogranites. Tectonophysics, 1987, 134: 39-57
[63]  Inger S, Harris N. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J Petrol, 1993, 34: 345-368
[64]  Searle M P, Parrish R R, Hodges K V, et al. Shisha Pangma leucogranite, south Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. J Geol, 1997, 105: 295-317
[65]  Kusky T M, Abdelsalam M, Stern R J, et al. Evolution of the east African and related orogens, and the assembly of the Gonwana. Precambrian Res, 2003, 123: 81-85
[66]  张泽明, 王金丽, 沈昆, 等. 环冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据. 岩石 学报, 2008, 24: 1627-1637
[67]  王晓先, 张进江, 杨雄英, 等. 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb 年龄、Hf 同位素特征及其地质意义. 地 学前缘, 2011, 18: 127-139
[68]  O’Brien P J, Zotov N, Law R, et al. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 2001, 29: 435-438
[69]  Auzanneau E, Vielzeuf D, Schmidt M W. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 2006, 152: 125-148
[70]  Hermann J, Spandler C J. Sediment melts at sub-arc depths: An experimental study. J Petrol, 2008, 49: 717-740
[71]  Yang J J, Powell R. Calculated Phase Relations in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O with Applications to UHP Eclogites and Whiteschists. J Petrol, 2006, 47: 2047-2071
[72]  Korsakov A V, Hermann J. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett, 2006, 241: 104-118
[73]  曾令森, 刘福来, 梁凤华, 等. 苏鲁榴辉岩钾长石+石英聚合体中重晶石族矿物及其意义[J].科学通报.2007, 52:2312-2318??浏览
[74]  曾令森, 梁凤华, Asimow P, 等. 深俯冲陆壳岩石部分熔融与苏鲁超高压榴辉岩中长英质多晶包裹体的形成[J].科学通报.2009, 54:1826-1840??浏览
[75]  Chen J F, Xie Z, Li H M, et al. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochem J, 2003, 37: 35-46
[76]  Wallis S, Tsuboi M, Suzuki K, et al. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 2005, 33: 129-132
[77]  Liu F L, Robinson P T, Gerdes A, et al. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the North Sulu UHP terrane in China: Constraints on the timing and nature of partial melting. Lithos, 2010, 117: 247-268
[78]  Guo L, Zhang H F, Harris N, et al. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis: Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex. Gondwana Res, 2011, doi: 10.1016/j.gr.2011.03.002
[79]  Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett, 2011, 301: 241-255
[80]  董昕. 青藏高原拉萨地体南部高级变质岩系的起源与演化: 岩石学与年代学研究. 博士学位论文. 北京: 中国地质科学院, 2011
[81]  Davis J H, von Blanckenburg F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett, 1995, 129: 85-102
[82]  Chemenda A I, Burg J P, Mattauer M. Evolutionary model of the Himalaya-Tibet system: Geopoem based on new modelling, geological and geophysical data. Earth Plant Sci Lett, 2000, 174: 397-409
[83]  Kohn M J, Parkinson C D. Petrologic case for Eocene slab break off during the Indo-Asian collision. Geology, 2002, 30: 591-594

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133