全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

苜蓿膜联蛋白MtAnn3基因的鉴定及其在根毛发育中的功能

DOI: 10.1360/csb2012-57-6-431, PP. 431-437

Keywords: 苜蓿,MtAnn3,膜联蛋白,根毛变形

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过5′RACE扩增了苜蓿膜联蛋白MtAnn3基因cDNA的5′末端序列.典型的膜联蛋白由一个N端结构域和一个C端保守的核心结构域组成,核心结构域一般含有4或8个由70个氨基酸组成的重复单元,而MtAnn3蛋白的核心结构域仅有1个重复单元.在洋葱表皮细胞中瞬时表达MtAnn3蛋白,揭示其具有细胞膜结合的特性.借助农杆菌介导的苜蓿转化实验表明,过表达MtAnn3的根部在不含Ca2+的培养基上生长,改变了根毛的极性,根毛顶端膨大变形,有时出现分叉现象.在农杆菌介导的MtAnn3启动子-GUS实验中,外源植物细胞分裂素可以诱导MtAnn3启动子的增强表达;接种苜蓿中华根瘤菌进行结瘤实验,启动子在根瘤原基和幼嫩根瘤中有较强的活性,而在成熟根瘤中活性较低,在衰老的根瘤中检测不到启动子活性.虽然MtAnn3在根瘤中的表达具有一定的时序性,它却不是瘤特异性的,它在苜蓿的根、茎、叶中都有高水平的转录表达.

References

[1]  2 Wymer C L, Bibikova T N, Gilroy S. Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J, 1997, 12: 427-439??
[2]  3 Ehrhardt D W, Wais R, Long S R. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell, 1996, 85: 673-681??
[3]  5 Raynal P, Pollard H B. Annexins: The problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta, 1994, 1197: 63-93
[4]  7 Niebel F C, Lescure N, Cullimore J V, et al. The Medicago truncatula MtAnn1 gene encoding an annexin is induced by Nod factors and during the symbiotic interaction with Rhizobium meliloti. Mol Plant Microbe Interact, 1998, 11: 504-513??
[5]  9 陈笑涛, 邹华松, 姚振华, 等. 苜蓿中华根瘤菌(Sinorhizobium meliloti) nifA 基因通过诱导宿主防卫反应调节根瘤的形成. 科学通报, 2007, 52: 2287-2291
[6]  10 田哲贤, 邹华松, 李健, 等. nifA 突变的苜蓿根瘤菌在根瘤中的转录组学分析. 科学通报, 2006, 51: 1787-1793
[7]  11 刘影, 朱家璧, 俞冠翘, 等. 苜蓿中华根瘤菌烯脂酰ACP 还原酶基因fabI1 的功能研究. 科学通报, 2009, 54: 3830-3833
[8]  13 Gong Z Y, He Z S, Zhu J B, et al. Sinorhizobium meliloti nifA mutant induces different gene expression profile from wild type in Alfalfa nodules. Cell Res, 2006, 16: 818-829??
[9]  15 Covitz P A, Smith L S, Long S A. Expressed sequence tags from a root-hair-enriched Medicago truncatula cDNA library. Plant Physiol,1998, 117: 1325-1332??
[10]  16 Gy?rgyey J, Vaubert D, Jiménez-Zurdo J I, et al. Analysis of Medicago truncatula nodule expressed sequence tags. Mol Plant Microbe Interact, 2000, 13: 62-71??
[11]  18 Lévy J, Bres C, Geurts R, et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science, 2004, 303: 1361-1364??
[12]  19 Gargantini P R, Gonzalez-Rizzo S, Chinchilla D, et al. A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Plant J, 2006, 48: 843-856??
[13]  21 Nakagawa T, Kawaguchi M. Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. Plant Cell Physiol, 2006, 47: 176-180
[14]  26 Gonzalez-Rizzo S, Crespi M, Frugier F. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell, 2006, 18: 2680-2693??
[15]  27 Frugier F, Kosuta S, Murray J D, et al. Cytokinin: Secret agent of symbiosis. Trends Plant Sci, 2008, 13: 115-120??
[16]  1 Ishida T, Kurata T, Okada K, et al. A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol,2008, 59: 365-386??
[17]  4 Cohn J, Day R B, Stacey G. Legume nodule organogenesis. Trends Plant Sci, 1998, 3: 105-110??
[18]  6 Konopka-Postupolska D. Annexins: Putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. Protoplasma, 2007,230: 203-215??
[19]  8 Manthey K, Krajinski F, Hohnjec N, et al. Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant Microbe Interact, 2004, 17: 1063-1077??
[20]  12 姚正华, 田哲贤, 戴小密, 等. 异源nifA 基因对苜蓿中华根瘤菌(Sinorhizobium meliloti) nifA 突变体的互补分析. 科学通报, 2006, 51: 2258-2264
[21]  14 Limpens E, Ramos J, Franken C, et al. RNA interference in Agrobacterium rhizogenes transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot, 2004, 55: 983-992??
[22]  17 Larrainzar E, Wienkoop S, Weckwerth W, et al. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiol, 2007, 144: 1495-1507??
[23]  20 Ligero F, Lluch C, Olivares J. Evolution of ethylene from roots of Medicago sativa plants inoculated with Rhizobium meliloti. J Plant Physiol, 1986, 125: 361-365??
[24]  22 Suzuki A, Akune M, Kogiso M, et al. Control of nodule number by the phytohormone abscisic acid in the roots of two legume species. Plant Cell Physiol, 2004, 45: 914-922??
[25]  23 Terakado J, Fujihara S, Goto S, et al. Systemic effect of a brassinosteroid on root nodule formation in soybean as revealed by the application of brassinolide and brassinazole. Soil Sci Plant Nutr, 2005, 51: 389-395??
[26]  24 Bauer P, Ratet P, Crespi M, et al. Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and Msenod12A expression patterns in alfalfa roots. Plant J, 1996, 10: 91-105
[27]  25 Lorteau M A, Ferguson B J, Guinel F C. Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol Plant, 2001, 112: 421-442??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133