Cotrina E, Iza-Mendia A, López B. Study of the ferrite grain coarsening behind the transformation front by electron backscattered diffraction techniques. Metall Mater Trans A, 2004, 35: 93-102
[2]
Tong M M, Li D Z, Li Y Y. Modeling the austenite-ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method. Acta Mater, 2004, 52: 1155-1162
[3]
Tong M M, Ni J, Zhang Y, et al. A new Monte Carlo simulation of three-dimensional microstructures and their evolution in polycrystalline. Scr Mater, 2004, 50: 909-913
[4]
Song X Y, Liu G Q, Gu N J. A new Monte Carlo simulation of three-dimensional microstructures and their evolution in polycrystalline. Chin Sci Bull, 1999, 44: 1432-1436
[5]
Luo B C, Wang H P, Wei B B. Phase field simulation of monotectic transformation for liquid Ni-Cu-Pb alloys. Chin Sci Bull, 2009, 54:183-188
[6]
Yang H, Wu C, Li H W, et al. Review on cellular automata simulations of microstructure evolution during metal forming process: Grain coarsening, recrystallization and phase transformation. Sci China Tech Sci, 2011, 54: 2107-2118
[7]
Ding H L, He Y Z, Liu L F. Cellular automata simulation of grain growth in three dimensions based on the lowest-energy principle. J Cryst Growth, 2006, 293: 489-497
[8]
Geiger J, Roósz A, Barkóczyb P. Simulation of grain coarsening in two dimensions by cellular automaton. Acta Mater, 2001, 49: 623-629
[9]
Raghavan S, Sahay S S. Modeling the grain growth kinetics by cellular automaton. Mater Sci Eng A, 2007, 445-446: 203-209
[10]
Raghavan S, Sahay S S. Modeling the topological features during grain growth by cellular automaton. Comput Mater Sci, 2009, 46: 92-99
[11]
Kugler G, Turk R. Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model. Comput Mater Sci, 2006, 37: 284-291
[12]
Mao W M, An Z G, Li S X. Influence of MnS particles on the behaviors of grain boundary migration in Fe-3%Si alloys. Chin Sci Bull,2009, 54: 4537-4540
[13]
Chen F, Cui Z S, Liu J. Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique. Mater Sci Eng A, 2010, 527: 5539-5549
[14]
He Y Z, Ding H L, Liu L F, et al. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle. Mater Sci Eng A, 2006, 429: 236-246
[15]
Yazdipour N, Davies C H J, Hodgson P D. Microstructural modeling of dynamic recrystallization using irregular cellular automata. Comput Mater Sci, 2008, 44: 566-576
[16]
Chen F, Cui Z S, Liu J. Modeling and simulation on dynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method. Model Simul Mater Sci Eng, 2009, 17: 1-19
[17]
Kugler G, Turk R. Modeling the dynamic recrystallization under multi-stage hot deformation. Acta Mater, 2004, 52: 4659-4668
[18]
Fjeldberg E, Marthinsen K. A 3D Monte Carlo study of the effect of grain boundary anisotropy and particles on the size distribution of grains after recrystallisation and grain growth. Comput Mater Sci, 2010, 48: 267-281
[19]
Chun Y B, Semiatin S L, Hwang S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium. Acta Mater, 2006, 54: 3673-3689
[20]
Gil F J, Planell J A. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys. Mater Sci Eng A, 2000, 283:17-24
[21]
Eylon D, Hall S A, Pierce C M, et al. Microstructure and mechanical properties relationships in the Ti-11 alloy at room and elevated temperatures. Metall Mater Trans A, 1976, 7: 1826-1871
[22]
Zhang M, Zhang J, McDowell D L. Microstructure-based crystal plasticity modeling of cyclic deformation of Ti-6Al-4V. Int J Plast, 2007,23: 1328-1348
[23]
Wang T, Guo H Z, Tan L J, et al. Beta grain growth behaviour of TG6 and Ti17 titanium alloys. Mater Sci Eng A, 2011, 528: 6375-6380
[24]
Ivasishin O M, Shevchenko S L, Semiatin S L. Effect of crystallographic texture on the isothermal beta grain-growth kinetics of Ti-6Al-4V. Mater Sci Eng A, 2002, 332: 343-350
[25]
Ivasishin O M, Semiatin S L, Markovsky P E, et al. Grain growth and texture evolution in Ti-/6Al-4V during beta annealing under continuous heating conditions. Mater Sci Eng A, 2002, 337: 88-96
[26]
Semiatin S L, Fagin P N, Glavicic M G, et al. Influence on texture on beta grain growth during continuous annealing of Ti-6Al-4V. Mater Sci Eng A, 2001, 299: 225-234
[27]
Semiatin S L, Kirby B C, Salishchev G A. Coarsening behavior of an alpha-beta titanium alloy. Metall Mater Trans A, 2004, 35:2809-2819
[28]
Semiatin S L, Corbett M W, Fagin P N, et al. Dynamic-coarsening behavior of an alpha/beta titanium alloy. Metall Mater Trans A, 2006,37: 1125-1136
[29]
Bradley J R, Rigsbee J M, Aaronson H I. Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C alloys. Metall Mater Trans A,1977, 6: 323-333
[30]
Zaeem M A, Kadiri H E, Wang P T, et al. Investigating the effects of grain boundary energy anisotropy and second-phase particles on grain growth using a phase-field model. Comput Mater Sci, 2011, 50: 2488-2492
[31]
Zheng C W, Xiao N M, Li D Z, et al. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: A cellular automaton modeling. Comput Mater Sci, 2008, 44: 507-514
[32]
Zheng C W, Xiao N M, Li D Z. Mesoscopic modeling of austenite static recrystallization in a low carbon steel using a coupled simulation method. Comput Mater Sci, 2009, 45: 568-575
[33]
Ding R, Guo Z X. Microstructural modeling of dynamic recrystallization using an extended cellular automaton approach. Comput Mater Sci, 2002, 23: 209-218