全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

考虑溶质原子拖拽效应及各向异性的元胞自动机法模拟钛合金单相区静态粗化

DOI: 10.1360/csb2012-57-7-487, PP. 487-497

Keywords: 晶粒粗化,元胞自动机模型,溶质原子拖拽效应,晶界迁移各向异性,钛合金

Full-Text   Cite this paper   Add to My Lib

Abstract:

晶粒静态粗化是一种重要的物理现象,严重影响微观结构的演化和材料的力学性能.如何有效模拟这一过程已经成为该领域的研究热点.本文通过考虑溶质原子拖拽效应和晶界迁移各向异性对晶粒粗化的影响,建立了元胞自动机模型,并对钛合金单相区静态粗化过程进行了模拟.为了描述不同溶质原子的拖拽效应对粗化的影响,文中将溶质原子在beta相中的扩散速度等效转化成钛原子的迁移速度.为此,提出了定量描述溶质原子扩散速度与钛原子迁移速度之间转化关系的数学表达式.其中,表达式中考虑了影响溶质原子扩散速度的因素如溶质原子的半径、原子质量及晶格类型.通过引入参数c0考虑晶界迁移各向异性对粗化的影响.当c0为1时,则认为晶界迁移为各向异性,若为0时则认为是各向同性.将上述表达式应用到元胞自动机模型中,模拟钛合金(包括TC4,Ti17,TG6和TA15)在单相区的静态粗化现象.预测结果包括粗化动力学和组织演化与试验进行了对比,而且较为吻合.最后,讨论了时间、温度和化学成分对粗化的影响,以及本文元胞自动机模型预测粗化的局限性.

References

[1]  Cotrina E, Iza-Mendia A, López B. Study of the ferrite grain coarsening behind the transformation front by electron backscattered diffraction techniques. Metall Mater Trans A, 2004, 35: 93-102
[2]  Tong M M, Li D Z, Li Y Y. Modeling the austenite-ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method. Acta Mater, 2004, 52: 1155-1162
[3]  Tong M M, Ni J, Zhang Y, et al. A new Monte Carlo simulation of three-dimensional microstructures and their evolution in polycrystalline. Scr Mater, 2004, 50: 909-913
[4]  Song X Y, Liu G Q, Gu N J. A new Monte Carlo simulation of three-dimensional microstructures and their evolution in polycrystalline. Chin Sci Bull, 1999, 44: 1432-1436
[5]  Luo B C, Wang H P, Wei B B. Phase field simulation of monotectic transformation for liquid Ni-Cu-Pb alloys. Chin Sci Bull, 2009, 54:183-188
[6]  Yang H, Wu C, Li H W, et al. Review on cellular automata simulations of microstructure evolution during metal forming process: Grain coarsening, recrystallization and phase transformation. Sci China Tech Sci, 2011, 54: 2107-2118
[7]  Ding H L, He Y Z, Liu L F. Cellular automata simulation of grain growth in three dimensions based on the lowest-energy principle. J Cryst Growth, 2006, 293: 489-497
[8]  Geiger J, Roósz A, Barkóczyb P. Simulation of grain coarsening in two dimensions by cellular automaton. Acta Mater, 2001, 49: 623-629
[9]  Raghavan S, Sahay S S. Modeling the grain growth kinetics by cellular automaton. Mater Sci Eng A, 2007, 445-446: 203-209
[10]  Raghavan S, Sahay S S. Modeling the topological features during grain growth by cellular automaton. Comput Mater Sci, 2009, 46: 92-99
[11]  Kugler G, Turk R. Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model. Comput Mater Sci, 2006, 37: 284-291
[12]  Mao W M, An Z G, Li S X. Influence of MnS particles on the behaviors of grain boundary migration in Fe-3%Si alloys. Chin Sci Bull,2009, 54: 4537-4540
[13]  Chen F, Cui Z S, Liu J. Mesoscale simulation of the high-temperature austenitizing and dynamic recrystallization by coupling a cellular automaton with a topology deformation technique. Mater Sci Eng A, 2010, 527: 5539-5549
[14]  He Y Z, Ding H L, Liu L F, et al. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle. Mater Sci Eng A, 2006, 429: 236-246
[15]  Yazdipour N, Davies C H J, Hodgson P D. Microstructural modeling of dynamic recrystallization using irregular cellular automata. Comput Mater Sci, 2008, 44: 566-576
[16]  Chen F, Cui Z S, Liu J. Modeling and simulation on dynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method. Model Simul Mater Sci Eng, 2009, 17: 1-19
[17]  Kugler G, Turk R. Modeling the dynamic recrystallization under multi-stage hot deformation. Acta Mater, 2004, 52: 4659-4668
[18]  Fjeldberg E, Marthinsen K. A 3D Monte Carlo study of the effect of grain boundary anisotropy and particles on the size distribution of grains after recrystallisation and grain growth. Comput Mater Sci, 2010, 48: 267-281
[19]  Chun Y B, Semiatin S L, Hwang S K. Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium. Acta Mater, 2006, 54: 3673-3689
[20]  Gil F J, Planell J A. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys. Mater Sci Eng A, 2000, 283:17-24
[21]  Eylon D, Hall S A, Pierce C M, et al. Microstructure and mechanical properties relationships in the Ti-11 alloy at room and elevated temperatures. Metall Mater Trans A, 1976, 7: 1826-1871
[22]  Zhang M, Zhang J, McDowell D L. Microstructure-based crystal plasticity modeling of cyclic deformation of Ti-6Al-4V. Int J Plast, 2007,23: 1328-1348
[23]  Wang T, Guo H Z, Tan L J, et al. Beta grain growth behaviour of TG6 and Ti17 titanium alloys. Mater Sci Eng A, 2011, 528: 6375-6380
[24]  Ivasishin O M, Shevchenko S L, Semiatin S L. Effect of crystallographic texture on the isothermal beta grain-growth kinetics of Ti-6Al-4V. Mater Sci Eng A, 2002, 332: 343-350
[25]  Ivasishin O M, Semiatin S L, Markovsky P E, et al. Grain growth and texture evolution in Ti-/6Al-4V during beta annealing under continuous heating conditions. Mater Sci Eng A, 2002, 337: 88-96
[26]  Semiatin S L, Fagin P N, Glavicic M G, et al. Influence on texture on beta grain growth during continuous annealing of Ti-6Al-4V. Mater Sci Eng A, 2001, 299: 225-234
[27]  Semiatin S L, Kirby B C, Salishchev G A. Coarsening behavior of an alpha-beta titanium alloy. Metall Mater Trans A, 2004, 35:2809-2819
[28]  Semiatin S L, Corbett M W, Fagin P N, et al. Dynamic-coarsening behavior of an alpha/beta titanium alloy. Metall Mater Trans A, 2006,37: 1125-1136
[29]  Bradley J R, Rigsbee J M, Aaronson H I. Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C alloys. Metall Mater Trans A,1977, 6: 323-333
[30]  Zaeem M A, Kadiri H E, Wang P T, et al. Investigating the effects of grain boundary energy anisotropy and second-phase particles on grain growth using a phase-field model. Comput Mater Sci, 2011, 50: 2488-2492
[31]  Zheng C W, Xiao N M, Li D Z, et al. Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: A cellular automaton modeling. Comput Mater Sci, 2008, 44: 507-514
[32]  Zheng C W, Xiao N M, Li D Z. Mesoscopic modeling of austenite static recrystallization in a low carbon steel using a coupled simulation method. Comput Mater Sci, 2009, 45: 568-575
[33]  Ding R, Guo Z X. Microstructural modeling of dynamic recrystallization using an extended cellular automaton approach. Comput Mater Sci, 2002, 23: 209-218

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133