全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

内蒙古中-东部兴蒙造山带古生代沉积记录:对物源特征及中亚造山带构造演化的指示

DOI: 10.1360/csb2012-57-7-550, PP. 550-559

Keywords: 碎屑沉积岩,兴蒙造山带,Nd,同位素,物源,构造演化

Full-Text   Cite this paper   Add to My Lib

Abstract:

兴蒙造山带为中亚造山带东段,其标志着华北板块与西伯利亚板块的界线.区域上广泛发育的古生代沉积地层可能蕴含着关于板块拼合及造山带演化的关键信息.奥陶纪-二叠纪碎屑沉积岩岩相学研究表明这些岩石主要为杂砂岩和长石砂岩,以较低的成熟度,较差的分选以及较高的岩屑含量为特征.古生代样品物源主要由新生的壳源物质充当.兴蒙造山带碎屑沉积岩Nd模式年龄分布于新元古代及中元古代晚期,范围与华北板块明显不同;而其εNd(t)值演化则与兴蒙造山带内部岩浆岩类演化特征类似,表明其物源可能主要源于兴蒙造山带内.碎屑沉积岩物源主要由带有增生特征岩类混合少量再循环端员组分构成;岩性上受长英质,部分熔融镁铁质及镁铁质岩类三端员控制.岩石学上,碎屑沉积岩平均成分相当于三端员依53415贡献比例进行混合.沉积环境在二叠纪发生变化,从岛弧过渡为造山带,并于三叠纪前完成碰撞.这一解释与该区最终碰撞时间为二叠纪末期至三叠纪的论断相一致.

References

[1]  Xiao W J, Windley B F, Huang B C, et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamics evolution, Phanerozoic continental growth, and metallogeny. Int J Earth Sci, 2009, 98: 1189-1217
[2]  Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group: Its role in the evolution of the Central Asian Orogenic Belt of NE China. J Asian Earth Sci,2007, 30: 542-556
[3]  施光海, 刘敦一, 张福勤, 等. 中国内蒙古锡林郭勒杂岩SHRIMP 锆石U-Pb 年代学及意义[J].科学通报.2003, 48:2187-2192??浏览
[4]  Chen B, Jahn B M, Tian W. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. J Asian Earth Sci, 2009, 34: 245-257
[5]  Long X P, Sun M, Yuan C, et al. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Tectonics, 2007, 26: TC5015, doi: 10.1029/2007TC002128
[6]  Li Q L, Chen F K, Guo J H, et al. Zircon ages and Nd-Hf isotopic composition of the Zhaertai Group (Inner Mongolia): Evidence for early Proterozoic evolution of the North China Craton. J Asian Earth Sci, 2007, 30: 573-590
[7]  Xia X P, Sun M, Zhao G C, et al. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth Planet Sci Lett, 2006, 241: 581-593
[8]  李国文, 李庆富, 姜万德, 等. 全国地层多重对比研究: 内蒙古自治区岩石地层. 武汉: 中国地质大学出版社, 1996
[9]  胡晓, 许传诗, 牛树银. 华北地台北缘早古生代大陆边缘演化. 北京: 北京大学出版社, 1990
[10]  赵光, 朱永峰, 张勇. 内蒙古锡林郭勒杂岩岩石学特征及其编制作用的P-T 条件. 岩石矿物学杂志, 2002, 21: 40-48
[11]  Xu B, Charvet J, Zhang F. 2001. Primary study on petrology and geochronology of blueschists in Sunitezuoqi, northern Inner Mongolia. J Geol,2001, 46: 6-14
[12]  Chen B, Jahn B M, Wilde S, et al. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications. Tectonophysics, 2000, 328: 157-182
[13]  Miao L C, Wang F, Liu D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. J Asian Earth Sci, 2008, 32: 348-370
[14]  Jahn B M, Cornichet J, Cong B L, et al. Ultrahigh-εNd eclogites from an ultrahigh-pressure metamorphic terrane of China. Chem Geol, 1996, 127:61-79
[15]  Pettijohn F J.[J].Potter P E, Siever R. Sand and Sandstone. New York: Springer-Verlag.1972,:-
[16]  Rudnick R L, Gao S. Composition of the continental Crust. In: Holland H D, Turnekian K K, eds. The Crust Vol. 3 Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 2003. 1-64
[17]  Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studieds. In: Henderson P, ed. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984. 63-114
[18]  Wu F Y, Zhao G C, Wilde S A, et al. Nd isotopic constraints on crustal formation in the North China Craton. J Asian Earth Sci, 2005, 24:523-545
[19]  Hong D W, Zhang J S, Wang T, et al. Continental crustal growth and the supercontinental cycle: Evidence from the Central Asian Orogenic Belt. J Asian Earth Sci, 2004, 23: 799-813
[20]  Chen Y L, Liu F, Zhang H F, et al. Elemental and Sm-Nd isotopic geochemistry on detrital sedimentary rocks in the Ganzi-Songpan block and Longmen Mountains. Front Earth Sci, 2007, 1: 60-68
[21]  Ghiorso M S, Sack R O. Chemical mass-transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the Interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contrib Mineral Petrol, 1995,119: 197-212
[22]  Asimow P D, Ghiorso M S. Algorithmic modifications extending MELTs to calculate subsolidus phase relations. Amer Mineral, 1998, 83:1127-1132
[23]  Smith P M, Asimow P D. Adiabat_1ph: A new public front-end to the MELTs, pMELTS, and pHMELTS models. Geochem Geophys Geosys, 2004, 6: Q02004, doi: 10.1029/2004GC000816
[24]  Thompson A B. Some time-space relationships for crustal melting and granitic intrusion at various depths. In: Castro A.[J].Fernández C, Vigneresse J L, eds. Understanding Granites: Integrating New and Classical Tectniques. London: The Geological Society Publishing House.1999,:-
[25]  Li D P, Chen Y L, Chen L M, et al. Zircon LA-ICPMS study and petrogenesis simulation of Dahuabei pluton in the Wulashan area, Inner Mongolia. Prog Natural Sci, 2009, 19: 1727-1737
[26]  陈岳龙, 杨忠芳, 赵志丹, 等. 同位素地质年代学与地球化学. 北京: 地质出版社, 2005. 1-441
[27]  Marsaglia K M, Ingersoll R V. Compositional trends in arc-related, deep-marine sand and sandstone: A reassessment of magmatic-arc provenance. Geol Soc Am Bull, 1992, 104: 1637-1649
[28]  Li D P, Chen Y L, Wang Z, et al. Detrital zircon U-Pb ages, Hf isotopes and tectonic implications for Palaeozoic sedimentary rocks from the Xing-Meng orogenic belt, Middle-East part of Inner Mongolia, China. Geol J, 2011, 46, doi: 10.1002/gj.1257
[29]  Li R W, Wan Y S, Cheng Z Y, et al. Provenance of Jurassic sediments in the Hefei Basin, East Central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan. Earth Planet Sci Lett, 2005, 231: 279-294
[30]  Armstrong-Altrin J S, Verma S P. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sediment Geol, 2005, 177: 115-129
[31]  Van de Kamp P C, Leake B E. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Trans R Soc Edinb Earth Sci, 1985, 76: 411-449
[32]  Shao L, Stattegger K, Carbe-Schoenberg C-D. Sandstone petrology and geochemistry of the Turban Basin (NW China): Implications for the tectonic evolution of a continental basin. J Sediment Res, 2001, 71: 37-49
[33]  Osae S, Asiedu D K, Banoeng-Yakubo B, et al. Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana: Evidence from geochemistry and detrital modes. J Afr Earth Sci, 2006, 44: 85-96
[34]  Dokuz A, Tanyolu E. Geochemical constraints on provenance, mineral sorting and subaerial weathering of Lower Jurassic and Upper Cretaceous clastic rocks of the eastern Pontides, Yusufeli (Artvin), NE Turkey. Turk J Earth Sci, 2006, 15: 181-209
[35]  Bahlburg H. The geochemistry and provenance of Ordovician turbidites in the Argentine Puna. In: Pankhurst R J, Rapela C W, eds. The Proto-Andean margin of Gondwana. London: The Geological Society Publishing House, 1998. 127-142
[36]  Taylor S R.[J].McLennan S M. The Continental Crust: Its composition and Evolution. Oxford: Blackwell Scientific Publications.1985,:-
[37]  Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem Geol, 1988, 67: 119-139
[38]  McLennan S M, Hemming S R, Taylor S R, et al. Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America. Geochim Cosmochim Acta, 1995, 59: 1153-1177
[39]  Bhatia M R. Plate tectonics and geochemical composition of sandstones. J Geol, 1983, 91: 611-627
[40]  Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol, 1986, 92: 181-193
[41]  Dickinson W R. Interpreting detrtital modes of greywacke and arkose. J Sediment Petrol, 1970, 40: 695-707
[42]  Dickinson W R, Beard L S, Brakenridge G R, et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Amer Bull, 1983, 94: 222-235
[43]  Goldstein S J, Jacobsen S B. Nd and Sr isotopic systematics of river water suspended material: Implications for crustal evolution. Earth Planet Sci Lett, 1988, 87: 249-265
[44]  Barovich K M, Foden J. A Neoproterozoic flood basalt province in southerncentral Australia: Geochemical and Nd isotope evidence from basin fill. Precambrian Res, 2000, 100: 213-234
[45]  McLennan S M. The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks. In: Lentz D R.[J].ed. Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments. St. John’s, New foundland: Geological Association of Canada.2003,:-
[46]  ? Patchett P J. Provenance and crust-mantle evolution studies based on radiogenic isotopes in sedimentary rocks. In: Lentz D R.[J].ed. Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments. St. John’s, New foundland: Geological Association of Canada.2003,:-
[47]  Chen Y L, Li D P, Zhou J, et al. U-Pb ages of zircons in western Qinlingshan, China, and their tectonic implications. Earth Sci Front, 2008, 15:88-107
[48]  Chen Y L, Li D P, Zhou J, et al. U-Pb dating, geochemistry, and tectonic implications of the Songpan-Ganzi block and the Longmen Shan, China. Geochem J, 2009, 43: 77-99
[49]  Howard K E, Hand M, Barovich K M, et al. Detrital zircon ages: Improving interpretation via Nd and Hf isotopic data. Chem Geol, 2009, 262:277-292
[50]  Khain E V, Bibikova E V, Kr?ner A, et al. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet Sci Lett, 2002, 199: 311-325
[51]  Zhang Y P, Tang K D. Pre-Jurassic tectonic evolution of intercontinental region and the suture zone between the North China and Siberian platforms. J Southeast Asian Earth Sci, 1989, 3: 47-55
[52]  Tang K D. Tectonic development of Paleozoic fold belts at the north margin of the Sino-Korean craton. Tectonics, 1990, 9: 249-260
[53]  Guo S Z. Timing of convergence process of Sino-Korean plate and Siberian plate inferred from biostratigraphic evidences. In: Ishii K, Liu X Y, Ichikawa K, et al, eds. Pre-Jurassic Geology of Inner Mongolia, China, China-Japan Cooperative Group. Osaka: Osaka University, 1991. 113-125
[54]  Wang Q, Liu X Y. Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia of China. Tectonics, 1986, 5: 1073-1088
[55]  Huang B H. Biogeography of Late Paleozoic Floras of northeastern China. In: Ishii K.[J].Liu X Y, Ichikawa K, eds. Pre-Jurassic Geology of Inner Mongolia, China, China-Japan Cooperative Group. Osaka: Osaka University.1991,:-
[56]  Nozaka T, Liu Y. Petrology of the Hegenshan ophiolite and its implications for the tectonic evolution of northern China. Earth Planet Sci Lett,2002, 202: 89-104
[57]  Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 2003, 22: 1069-1089

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133