全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

锂离子电池正极材料富锂锰基固溶体的研究进展

DOI: 10.1360/972011-610, PP. 794-804

Keywords: 富锂锰基固溶体,锂离子电池,正极材料,电化学性能,功率特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

富锂锰基固溶体xLi[Li1/3Mn2/3]O2·(1-x)LiMO2具有超过目前所用正极材料1倍的高比容量,是很有潜力的下一代锂离子电池用正极材料,但是其他电化学性能,特别是功率特性尚不能满足应用要求.从机理研究、合成工艺和性能改进3方面综述了富锂锰基固溶体型锂离子电池正极材料xLi[Li1/3Mn2/3]O2·(1-x)LiMO2的研究现状,提出了下一步的研究思路和方向.

References

[1]  64 Deng H, Belharouak I, Sun Y K, et al. LixNi0.25Mn0.75Oy (0.5 ≤ x ≤ 2, 2 ≤ y ≤ 2.75) compounds for high-energy lithium-ion batteries. J Mater Chem, 2009, 19: 4510-4516
[2]  65 Deng H, Belharouak I, Wu H, et al. Effect of cobalt incorporation and lithium enrichment in lithium nickel manganese oxides. J Electrochem Soc, 2010, 157: A776-A781
[3]  71 Ryu J H, Park B G, Kim S B. Effect of surface area on electrochemical performance of Li[Ni0.2Li0.2Mn0.O2 cathode material. J Appl Electrochem, 2009, 39: 1059-1066
[4]  72 Tabuchi M, Nabeshima Y, Ado K, et al. Material design concept for Fe-substituted Li2MnO3-based positive electrodes. J Power Sources,2007, 174: 554-559??
[5]  73 Wu Y, Manthiram A. High capacity, surface-modified layered Li[Li(1?x)/3Mn(2?x)/3Nix/3Cox/O2 cathodes with low irreversible capacity loss. Electrochem Solid State Lett, 2006, 9: A221-A224
[6]  76 郑建明, 杨勇. AlF3 包覆对锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.O2 电化学性能的影响. 第十四届全国固态离子学学术会议, 厦门, 2008 年7 月. B38
[7]  81 Liu J, Wang Q, Reeja J B, et al. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.O2 cathodes. Electrochem Comm, 2010, 12:750-753
[8]  82 Gao J, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries. Electrochem Comm, 2009, 11: 84-86
[9]  83 Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.O2 cathode by blending with other lithium insertion hosts. J Power Sources, 2009, 191: 644-647
[10]  84 Johnson C S, Kim J S, Lefief C, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1?x)LiMn0.5Ni0.5O2 electrodes. Electrochem Comm, 2004, 6: 1085-1091
[11]  85 Kim J S, Johnson C S, Vaughey J T, et al. Pre-conditioned layered electrodes for lithium batteries. J Power Sources, 2006, 153: 258-264??
[12]  86 Denis Y W Y, Yanagida K, Nakamura H, et al. The 15th International Meeting on Lithium Batteries, Montreal, Canada, 28 Jun-2 July,2010. Oral Report #315
[13]  87 Denis Y W Y, Katsunori Y, Hiroshi N. Surface modification of Li-excess Mn-based cathode materials. J Electrochem Soc, 2010, 157: A1177-A1182??
[14]  90 Wei G Z, Lu X, Ke F S, et al. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/O2 for high-rate performance lithium-ion batteries. Adv Mater, 2010, 22: 4364-4367??
[15]  2 Thomas M G S R, David W I F, Goodenough J B. Synthesis and structural characterization of the normal spinel Li[NiO4. Mat Res Bull,1985, 20: 1137-1146??
[16]  5 Padhi A K, Nanjundoswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188-1194??
[17]  6 Caurant D, Baffier N, Garcia B. Synthesis by a soft chemistry route and characterization of LiNixCo1-xO2 (0 ≤ x ≤ 1) cathode materials. Solid State Ionics, 1996, 91: 45-54??
[18]  8 Fong R, Sacken U Y, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc,1990, 137: 2009-2013??
[19]  9 Kalyani P, Chitra S, Mohan T, et al. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J Power Sources, 1999, 80:103-106??
[20]  10 Park S H, Sato Y, Kim J K, et al. Powder property and electrochemical characterization of Li2MnO3 material. Mater Chem Phys, 2007,102: 225-230??
[21]  13 Boulineau A, Croguennec L, Delmas C, et al. Structure of Li2MnO3 with different degrees of defects. Solid State Ion, 2010, 180:1652-1659??
[22]  14 Park S H, Ahn H S, Park G J, et al. Cycle mechanism and electrochemical properties of lithium manganese oxide prepared using different Mn sources. Mater Chem Phys, 2008, 112: 696-701??
[23]  15 Zhang W X, Liu Y, Yang Z H, et al. Synthesis and characterization of nanostructured Li2MnO3 from nanostructured MnOOH precursors. Solid State Commun, 2004, 131: 441-445??
[24]  17 Rossouw M H, Liles D C, Thackeray M M. Alpha manganese dioxide for lithium batteries: A structural and electrochemical study. Mater Res Bull, 1992, 27: 221-230??
[25]  18 Tabuchi M, Nabeshima A, Ado K, et al. The effects of preparation condition and dopant on the electrochemical property for Fe-substituted Li2MnO3. J Power Sources, 2005, 146: 287-293??
[26]  19 Tabuchi M, Nabeshima Y, Ado K, et al. Material design concept for Fe-substituted Li2MnO3-based positive electrodes. J Power Sources,2007, 174: 554-559??
[27]  20 Tabuchi M, Nabeshima Y, Takeuchi T. Fe content effects on electrochemical properties of Fe-substituted Li2MnO3 positive electrode material. J Power Sources, 2010, 195: 834-844??
[28]  21 Mori D, Sakaebe H, Shikano M, et al. Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li2MnO3 as a novel cathode material. J Power Sources, 2011, 196: 6934-6938
[29]  22 Johnson C S, Korte S D, Vaughey J T, et al. Structural and electrochemical analysis of layered compounds from Li2MnO3. J Power Sources, 1999, 81-82: 491-495
[30]  23 Johnson C S, Thackeray M M. Interfaces, phenomena, and nanostructures in lithium batteries. Electrochem Soc Inc, 2001, PV 2000-36: 47
[31]  25 Ammundsen B, Paulsen J. Novel lithium-ion cathode materials based on layered manganese oxides. Adv Mater, 2001, 13: 943-956??
[32]  26 Lu Z, MacNeil D D, Dahn J R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries. Electrochem Solid State Lett, 2001, 4: A191-A194??
[33]  28 Ammundsen B, Paulsen J, Davidson I, et al. Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material. J Electrochem Soc, 2002, 149: A431-A436
[34]  30 Numata K, Yamanaka S. Preparation and electrochemical properties of layered lithium-cobalt-manganese oxides. Solid State Ion, 1999,118: 117-120??
[35]  31 Park Y J, Hong Y S, Wu X, et al. Synthesis and electrochemical characteristics of Li[CoxLi(1/3-x/3)Mn(2/3-2x/3)]O2 compounds. J Electrochem Soc, 2004, 151: A720-A727??
[36]  34 Whitfield P S, Niketic S, Davidson I J. Effects of synthesis on electrochemical, structural and physical properties of solution phases of Li2MnO3-LiNi1?xCoxO2. J Power Sources, 2005, 146: 617-622
[37]  38 Lim J H, Banga H, Lee K S, et al. Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/O2-LiNiO2 cathode synthesized via coprecipitation for lithium secondary batteries. J Power Sources, 2009, 189: 571-575??
[38]  39 Ito A, Li D, Sato Y, et al. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.O2. J Power Sources, 2010, 195: 567-573
[39]  40 Yu L Y, Qiu W H, Lian F, et al. Comparative study of layered 0.65Li[Li1/3Mn2/O2·0.35LiMO2 (M = Co, Ni1/2Mn1/2 and Ni1/3Co1/3Mn1/3) cathode materials. Mater Lett, 2008, 62: 3010-3013
[40]  41 Yu L Y, Qiu W H, Lian F, et al. Understanding the phenomenon of increasing capacity of layered 0.65Li[Li1/3Mn2/O2·0.35Li(Ni1/3Co1/3Mn1/3)O2. J Alloys Comp, 2009, 471: 317-321
[41]  42 Tabuchi M, Shigemura H, Ado K, et al. Preparation of lithium manganese oxides containing iron. J Power Sources, 2001, 97-98: 415-419
[42]  46 Lu Z, Chen Z, Dahn J R. Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/O2 (0xLi(1-x)/3Mn(2-2x)/3]O2 (0
[43]  47 Kim J S, Johnson C S, Vaughey J T, et al. Electrochemical and structural properties of xLi2M’O3·(1?x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M’ = Ti, Mn, Zr; 0≤x≤0.3). Chem Mater, 2004, 16: 1996-2006
[44]  48 Yoon W S, Iannopollo S, Grey C P, et al. Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2-x)/3Li(1-2x)/O2. Electrochem Solid State Lett, 2004, 7: A167-A171??
[45]  49 Kikkawa J, Akita T, Tabuchi M. Real-space observation of Li extraction/insertion in Li1.2Mn0.4Fe0.4O2 positive electrode material for Li-ion batteries. Electrochem Solid-State Lett, 2008, 11: A183-A186
[46]  51 Lu Z, Dahn J R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/O2. J Electrochem Soc, 2002, 149: A778-A785
[47]  53 Armstrong A R, Holzapfel M, Novák P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.O2. J Am Chem Soc, 2006, 128: 8694-8698
[48]  54 Koyama Y, Tanaka I, Nagao M, et al. First-principles study on lithium removal from Li2MnO3. J Power Sources, 2009, 189: 798-801??
[49]  57 Johnson C S, Li N, Lefief C, et al. Anomalous capacity and cycling stability of xLi2MnO3·(1?x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50°C. Electrochem Comm, 2007, 9: 787-795
[50]  59 Hong Y S, Park Y J, Ryu K S, et al. Synthesis and electrochemical properties of nanocrystalline Li[NixLi(1-2x)/3Mn(2-x)/O2 prepared by a simple combustion method. J Mater Chem, 2004, 14: 1424-1429??
[51]  61 Wu Y, Manthiram A. Effect of surface modifications on the layered solid solution cathodes (1-z) Li[Li1/3Mn2/O2-(z) Li[Mn0.5-yNi0.5-yCO2y]O2. Solid State Ion, 2009, 180: 50-56
[52]  62 Guo X J, Xiao Y X, Zheng M, et al. Structural and electrochemical characterization of xLi[Li1/3Mn2/O2·(1-x)Li[Ni1/3Co1/3Mn1/3]O2 (0≤x ≤0.9) as cathode materials for lithium ion batteries. J Power Sources, 2008, 184: 414-419
[53]  63 胡伟, 谢辉, 张骞, 等. 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 的合成及电化学性能. 世界有色金属, 2009, 3: 35-37
[54]  66 Kang S H, Sun Y K, Amine K. Electrochemical and ex situ X-ray study of Li[Li0.2Ni0.2Mn0.O2 cathode material for Li secondary batteries. Electrochem Solid-State Lett, 2003, 6: A183-A186
[55]  67 Kim J H, Park C W, Sun Y K. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/O2 cathode materials. Solid State Ion, 2003, 164: 43-49
[56]  68 Lee S H, Koo B K, Kim J C, et al. Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.O2 cathode material for lithium rechargeable batteries. J Power Sources, 2008, 184: 276-283
[57]  69 杜柯, 周伟瑛, 胡国荣, 等. 锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.O2 的合成及电化学性能研究. 化学学报, 2010, 68:1391-1398
[58]  70 Kim G Y, Yi S B, Park Y J, et al. Electrochemical behaviors of Li[Li(1?x)/3Mn(2?x)/3Nix/3Cox/O2 cathode series (0 < x < 1) synthesized by sucrose combustion process for high capacity lithium ion batteries. Mater Res Bull, 2008, 43: 3543-3552??
[59]  74 Wu Y, Murugan A V, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.O2 cathodes by AlPO4. J Electrochem Soc, 2008, 155: A635-A641
[60]  75 Zheng J M, Li J, Zhang Z R, et al. The effect of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.O2 cathode material for lithium-ion battery. Solid State Ionics, 2008, 179: 1794-1799
[61]  77 Kang S H, Thackeray M M. Enhancing the rate capability of high capacity xLi2MnO3·(1-x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment. Electrochem Comm, 2009, 11: 748-751
[62]  78 Wang Q Y, Liu J, Murugan A V. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.O2 cathode with improved rate capability. J Mater Chem, 2009, 19: 4965-4972
[63]  79 Zhao Y, Zhao C, Feng H. Enhanced electrochemical performance of Li[Li0.2Ni0.2Mn0.O2 modified by manganese oxide coating for lithium- ion batteries. Electrochem Solid-State Lett, 2011, 14: A1-A5
[64]  80 吴晓彪, 董志鑫, 郑建明, 等. 锂离子电池正极材料Li[Li0.2Mn0.54Ni0.13Co0.O2 的碳包覆研究. 厦门大学学报, 2008, 47(增刊):224-227
[65]  88 Abouimrane A, Compton O C, Deng H, et al. Improved rate capability in a high-capacity layered cathode material via thermal reduction. Electrochem Solid-State Lett, 2011, 14: A126-A129??
[66]  89 Min G K, Minki J, Young S H, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.O2 nanowires for high performance lithium battery cathode. Chem Commun, 2009, 218-220
[67]  91 Kang S H, Amine K. Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55-0.5z)O2-zFz cathode materials for Li-ion secondary batteries. J Power Sources,2005, 146: 654-656
[68]  92 Ito A, Li D, Ohsawa Y, et al. A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment. J Power Sources, 2008, 183: 344-348??
[69]  93 Thackeray M M, Johnson C S, Amine K, et al. Lithium Metal Oxide Electrodes for Lithium Cells and Batteries. US Patent 6677082, January13, 2004
[70]  94 Thackeray M M, Johnson C S, Amine K, et al. Lithium Metal Oxide Electrodes for Lithium Cells and Batteries. US Patent 6677143, January20, 2004??
[71]  95 Thackeray M M, Johnson C S, Amine K, et al. Lithium Metal Oxide Electrodes for Lithium Cells and Batteries. US Patent 7135252, November14, 2006??
[72]  96 Thackeray M M, Johnson C S, Li N C, et al. Manganese Oxide Composite Electrodes for Lithium Batteries. US Patent 7303840, December4, 2007??
[73]  97 Thackeray M M, Kim J S, Johnson C S, et al. Lithium Metal Oxide Electrodes for Lithium Batteries. US Patent 7314682, January 1, 2008
[74]  98 Johnson C S, Thackeray M M, Vaughey J T, et al. Layered Electrodes for Lithium Cells and Batteries. US Patent 7358009, April 15, 2008
[75]  99 Thackeray M M, Johnson C S, Amine K, et al. Lithium Metal Oxide Electrodes for Lithium Cells and Batteries. US Patent 7468223, December23, 2008
[76]  100 Johnson C S, Kang S H, Thackeray M M. Manganese Oxide Composite Electrodes for Lithium Batteries. US Patent 7635536, December22, 2009??
[77]  101 Thackeray M M, Johnson C S, Amine K, et al. Lithium Metal Oxide Electrodes for Lithium Batteries. US Patent 7732096, June 8, 2010??
[78]  102 Johnson C S, Kang S H, Thackeray M M. Manganese Oxide Composite Electrodes for Lithium Batteries. US Patent 7790308, September7, 2010
[79]  1 Mizusbima K, Jones P C, Wiseman P J, et al. LixCoO2 (0
[80]  3 Gummow R J, Thackeray M M. An investigation of spinel-related and orthorhombic LiMnO2 cathodes for rechargeable lithium batteries. J Electrochem Soc, 1994, 141: 1178??
[81]  4 Tarascon J M, Wang E, Shokoohi F K. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J Electrochem Soc, 1991, 138:2859-2864??
[82]  7 Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett, 2001, 30:642-643
[83]  11 Robertson A D, Bruce P G. Mechanism of electrochemical activity in Li2MnO3. Chem Mater, 2003, 15: 1984-1992??
[84]  12 Robertson A D, Bruce P G. The origin of electrochemical activity in Li2MnO3. Chem Commun, 2002, 2790-2791
[85]  16 Tang W, Kanoh H, Ooi K, et al. Preparation of a new type of manganese oxide by selective lithium extraction from monoclinic Li2MnO3 for lithium rechargeable batteries. J Mater Sci Lett, 2000, 19: 1361-1363??
[86]  24 Ammundsen B, Desilvestro J, Steiner R, et al. The 10th International Meeting on Lithium Batteries, Como, Italy, 28 May-2 June, 2000. Ext. Abstr. No. 17
[87]  27 Lu Z, Dahn J R. Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc, 2002, 149: A815-A822??
[88]  29 Ammundsen B, Desilvestro J, Steiner R, et al. The 10th International Meeting on Lithium Batteries, Como, Italy, May 28-June 2, 2000, Abstract 17
[89]  32 Sun Y, Shiosaki Y, Xia Y, et al. The preparation and electrochemical performance of solid solutions LiCoO2-Li2MnO3 as cathode materials for lithium ion batteries. J Power Sources, 2006, 159: 1353-1359??
[90]  33 Zhang L, Noguchi H, Yoshio M. Synthesis and electrochemical properties of layered Li-Ni-Mn-O compounds. J Power Sources, 2002,110: 57-64??
[91]  35 Sun Y, Ouyang C, Wang Z, et al. Effect of Co content on rate performance of LiMn0.5-xCO2xNi0.5-xO2 cathode materials for lithium-ion batteries. J Electrochem Soc, 2004, 151: A504-A508
[92]  36 Shin S S, Sun Y K, Amine K. Synthesis and electrochemical properties of Li[Li(1?2x)/3NixMn(2?x)/O2 as cathode materials for lithium secondary batteries. J Power Sources, 2002, 112: 634-638??
[93]  37 Ito A, Shoda K, Sato Y, et al. Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.O2 upon the first charge and discharge. J Power Sources, 2011, 196: 4785-4790
[94]  43 Johnson C S, Li N, Vaughey J T, et al. Lithium-manganese oxide electrodes with layered-spinel composite structures xLi2MnO3· (1-x)Li1+yMn2-yO4 (0 44 Park S H, Kang S H, Johnson C S, et al. Lithium-manganese-nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries. Electrochem Comm, 2007, 9: 262-268??
[95]  45 Pan C J, Lee Y J, Ammundsen B, et al. Li MAS NMR studies of the local structure and electrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries. Chem Mater, 2002, 14: 2289-2299??
[96]  50 Kalyani P, Chitra S, Mohan T, et al. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J Power Sources, 1999, 80:103-106??
[97]  52 Jiang J, Eberman K W, Krause L J, et al. Structure, electrochemical properties, and thermal stability studies of Li[Ni0.2Co0.6Mn0.O2. J Electrochem Soc, 2005, 152: A1874-A1879
[98]  55 Robertson A D, Bruce P G. The origin of electrochemical activity in Li2MnO3. Chem Comm, 2002, 2790-2791
[99]  56 Armstrong A R, Robertson A D, Bruce P G J. Overcharging manganese oxides: Extracting lithium beyond Mn4+. J Power Sources, 2005,146: 275-280??
[100]  58 Robertson A D, Bruce P G. Mechanism of electrochemical activity in Li2MnO3. Chem Mater, 2003, 15: 1984-1992??
[101]  60 Lim J H, Bang H, Lee K S, et al. Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries. J Power Sources, 2009, 189: 571-575??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133