全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

乳腺癌特异性多肽介导生物大分子体内外效应

DOI: 10.1360/972011-262, PP. 813-820

Keywords: 乳腺癌,融合蛋白,靶向治疗,增强型绿色荧光蛋白(EGFP),单纯疱疹病毒胸腺嘧啶核苷激酶(HSV-tk)

Full-Text   Cite this paper   Add to My Lib

Abstract:

探讨乳腺癌特异性多肽PI携带外源性生物大分子靶向抗肿瘤的作用.将分离纯化获得的融合蛋白PI-EGFP与靶细胞MDA-MB-231体外共培养,探讨融合蛋白与靶细胞的结合能力;将此融合蛋白经尾静脉及肿瘤局部注射入荷瘤裸鼠体内,探讨其在肿瘤部位的聚集程度;利用分子克隆技术构建重组原核表达载体pET-28a(+)-pI-tk,诱导表达、分离纯化、鉴定获得的融合蛋白PI-HSV-TK,将不同浓度的融合蛋白与MDA-MB-231细胞共培养,经更昔洛韦(ganciclovir,GCV)作用后,探讨PI-HSV-tk对细胞的靶向杀伤效应.荧光显微镜下观察,在靶细胞内可检测到绿色荧光信号,经尾静脉及局部注射融合蛋白PI-EGFP后,在不同组织器官可见不同强度的荧光信号,在尾静脉注射组的肾脏和肿瘤部位可检测到荧光信号,而局部注射组仅在肿瘤部位可检测到;成功构建了重组原核表达载体pET-28a(+)-pI-tk;分离纯化获得高效表达的PI-TK融合蛋白,SDS-PAGE电泳及Westernblotting鉴定融合蛋白的表达正确;CCK-8法及流式细胞仪检测显示,GCV对转导融合蛋白的MDA-MB-231细胞有杀伤作用,IC50值为152.64μg/mL.乳腺癌特异性转导多肽能携带生物大分子进入靶细胞,并携带具有杀伤效应的物质,使其发挥靶向治疗作用,为进一步探讨该多肽作为靶向性载体奠定实验基础和理论依据.

References

[1]  1 董坚, 刘为青, 蒋爱梅, 等. 乳腺癌细胞靶向特异性多肽研究. 科学通报, 2008, 53: 417-425
[2]  5 Alavi J B, Eck S L. Gene therapy for high grade gliomas. Expert Opin Biol Ther, 2001, 1: 239-252??
[3]  6 高嫦娥, 洪敏, 刘为青, 等. 乳腺癌特异性转导小肽融合表达载体的构建以及目的蛋白的表达. 中国医药生物技术, 2010, 5:177-180
[4]  7 Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2002
[5]  8 甄林林, 武正炎, 范萍, 等. 人乳腺癌裸鼠移植模型的建立. 南京医科大学学报, 2001, 21: 509-510
[6]  10 余微波, 谷俊朝. 乳腺癌动物模型的建立. 国外医学(外科学分册), 2005, 32: 63-66
[7]  16 Strazzullo P, Galletti F, Barba G. Altered renal handling of sodium in human hypertension: Short review of the evidence. Hypertension,2003, 41: 1000-1005??
[8]  17 Lippert C, Seeger H, Mueck A O. The effect of endogenous estradiol metabolites on the proliferation of human breast cancer cells. Life Sci, 2003, 72: 877-883??
[9]  18 Freeman S M, Abboud C N, Whartenby K A, et al. The “bystander effect”: Tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res, 1993, 53: 5274-5283
[10]  19 Culver K W, Ram Z, Wallbridge S, et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science, 1992, 256: 1550-1552??
[11]  2 Dong J, Liu W Q, Jiang A M, et al. A novel peptide, selected from phage display library of random peptides, can efficiently target into human breast cancer cell. Chin Sci Bull, 2008, 53: 860-867??
[12]  3 Dong J, Yang J, Chen M Q, et al. A comparative study of gene vaccines encoding different extracellular domains of the vascular endothelial growth factor receptor 2 in the mouse model of colon adenocarcinoma CT-26. Cancer Biol Ther, 2008, 7: 502-509??
[13]  4 Heim R, Cubitt A B, Tsien R Y. Improved green fluorescence. Nature, 1995, 373: 663-664
[14]  9 唐宏涛, 魏敏杰. 乳腺癌实验动物模型的制备与应用. 中国实验动物学报, 2007, 15: 234-237
[15]  11 杨生玺, 蒋虹. HSV-tk 基因对乳腺癌细胞的体外作用. 第四军医大学学报, 2005, 26: 1386
[16]  12 Joliot A, Prochiantz A. Transduction peptides: From technology to physiology. Nat Cell Biol, 2004, 6: 189-196??
[17]  13 Green M, Loewenstein P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988, 55: 1179-1188??
[18]  14 Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55: 1188-1193
[19]  15 Doris P A. Renal proximal tubule sodium transport and genetic mechanisms of essential hypertension. J Hypertens, 2000, 18: 509-519??
[20]  20 Burrow F J, Core M, Smiley W R, et al. Purified herpes simplex virus thymidine kinase retroviral particles: III. Characterization of bystander killing mechanisms in transfected tumor cells. Cancer Gene Ther, 2002, 9: 87-95??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133