全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

Alq3有机发光二极管中的超小磁场效应

DOI: 10.1360/972011-1560, PP. 891-897

Keywords: 有机发光二极管,超精细相互作用,磁电导,磁发光

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了基于Alq3的有机发光二极管,器件结构为ITO/NPB/Alq3/LiF/Al,并在不同温度测量了器件在不同偏压下传导电流与电致发光的磁场效应.在较大的磁场范围内,磁电导曲线基本服从B2/(|B|+B0)2规律.而在零场附近很小的磁场范围内,测量结果显示出奇特的超小磁场效应.考虑载流子自旋与有机分子中核自旋之间的超精细相互作用对载流子自旋的调控,可以对这种零场附近的超小磁场效应给出合理解释.

References

[1]  Kalinowski J, Szmytkowski J, Stampor W. Magnetic hyperfine modulation of charge photogeneration in solid films of Alq3. Chem Phys Lett, 2003, 378: 380-387 [2] Kalinowski J, Cocchi M, Virgili D, et al. Magnetic field effects on emission and current in Alq3 -based electroluminescent diodes. Chem Phys Lett, 2003, 380: 710-715 [3] Mermer, Veeraraghavan G, Francis T L, et al. Large magnetoresistance at room-temperature in small-molecular-weight organic semiconductor sandwich devices. Solid State Comm, 2005, 134: 631-636 [4] Sheng Y, Mermer, Wohlgenannt M, et al. Hyperfine interaction and magnetoresistance in organic semiconductors. Phys Rev B, 2006,74: 045213 [5] Prigodin V N, Bergeson J D, Lincoln D M, et al. Anomalous room temperature magnetoresistance in organic semiconductor. Synth Metal,2006, 156: 757-761 [6] Desai P, Shakya P, Kreouzis T, et al. Magnetoresistance and efficiency measurements of Alq3-based OLEDs. Phys Rev B, 2007, 75:094423 [7] Hu B, Wu Y. Tuning magnetoresistance between positive and negative values in organic semiconductors. Nat Mater, 2007, 6: 985-990 [8] Bloom F L, Wagemans W, Kemerink M, et al. Separating positive and negative magnetoresistance in organic semiconductor devices. Phys Rev Lett, 2007, 99: 257201 [9] Nguyen T D, Sheng Y, Wohlgenannt M, et al. Magnetic field-effects in bipolar, almost hole-only and almost electron-only tris-(8-hydroxyquinoline) aluminum devices[J].Phys Rev B.2008, 77:235209- [10] Bergeson J D, Prigodin V N, Lincoln D M, et al. Inversion of magnetoresistance in organic semiconductors. Phys Rev Lett, 2008, 100:067201 [11] Zhang Y, Liu R, Xiong Z H, et al. Low temperature magnetic field effects in Alq3 -based organic light emitting diodes. Appl Phys Lett,2009, 94: 083307 [12] Lei Y L, Zhang Y, Liu R, et al. Driving current and temperature dependent magnetic-field modulated electroluminescence in Alq3-based organic light emitting diode. Org Electron, 2009, 10: 889-894 [13] Xin L Y, Li C N, Li F, et al. Inversion of magnetic field effects on electrical current and electroluminescence in tris -(8-hydroxyquinoline) aluminum based light-emitting diodes. Appl Phys Lett, 2009, 95: 123306 [14] Ding B F, Yao Y, Sun Z Y, et al. Magnetic field effects on the electroluminescence of organic light emitting devices: A tool to indicate the carrier mobility. Appl Phys Lett, 2010, 97: 163302 [15] Bobbert P A, Nguyen T D, Wohlgenannt M, et al. Bipolaron mechanism for organic magnetoresistance. Phys Rev Lett, 2007, 99: 216801 [16] Nguyen T D, Hukic-Markosian G, Wang F J, et al. Isotope effect in spin response of -conjugated polymer films and devices. Nat Mater,2010, 9: 345-352 [17] Nguyen T D, Gautam B R, Ehrenfreund E, et al. Magnetoconductance response in unipolar and bipolar organic diodes at ultrasmall fields. Phys Rev Lett, 2010, 105: 166804 [18] Wagemans W, Koopmans B. Spin transport and magnetoresistance in organic semiconductors. Phys Status Solid B, 2011, 248: 1029-1041 [19] 张勇, 李艳, 李盛慧, 等. 利用光磁共振实验测量地磁场强度. 西南师范大学学报(自然科学版), 2011, 36: 55-58 [20] Hayashi H, Sakaguchi Y, Wakasa M. Magnetic field effects and spin dynamics of radical reactions in solution. Bull Chem Soc Jpn, 2001,74: 773-783 [21] Kersten S P, Schellekens A J, Koopmans B, et al. Magnetic-field dependence of the electroluminescence of organic light-emitting diodes: A competition between exciton formation and spin mixing. Phys Rev Lett, 2011, 106: 197402
[2]  Kalinowski J, Szmytkowski J, Stampor W. Magnetic hyperfine modulation of charge photogeneration in solid films of Alq3. Chem Phys Lett, 2003, 378: 380-387
[3]  Kalinowski J, Cocchi M, Virgili D, et al. Magnetic field effects on emission and current in Alq3 -based electroluminescent diodes. Chem Phys Lett, 2003, 380: 710-715
[4]  Mermer, Veeraraghavan G, Francis T L, et al. Large magnetoresistance at room-temperature in small-molecular-weight organic semiconductor sandwich devices. Solid State Comm, 2005, 134: 631-636
[5]  Sheng Y, Mermer, Wohlgenannt M, et al. Hyperfine interaction and magnetoresistance in organic semiconductors. Phys Rev B, 2006,74: 045213
[6]  Prigodin V N, Bergeson J D, Lincoln D M, et al. Anomalous room temperature magnetoresistance in organic semiconductor. Synth Metal,2006, 156: 757-761
[7]  Desai P, Shakya P, Kreouzis T, et al. Magnetoresistance and efficiency measurements of Alq3-based OLEDs. Phys Rev B, 2007, 75:094423
[8]  Hu B, Wu Y. Tuning magnetoresistance between positive and negative values in organic semiconductors. Nat Mater, 2007, 6: 985-990
[9]  Bloom F L, Wagemans W, Kemerink M, et al. Separating positive and negative magnetoresistance in organic semiconductor devices. Phys Rev Lett, 2007, 99: 257201
[10]  Nguyen T D, Sheng Y, Wohlgenannt M, et al. Magnetic field-effects in bipolar, almost hole-only and almost electron-only tris-(8-hydroxyquinoline) aluminum devices[J].Phys Rev B.2008, 77:235209-
[11]  Bergeson J D, Prigodin V N, Lincoln D M, et al. Inversion of magnetoresistance in organic semiconductors. Phys Rev Lett, 2008, 100:067201
[12]  Zhang Y, Liu R, Xiong Z H, et al. Low temperature magnetic field effects in Alq3 -based organic light emitting diodes. Appl Phys Lett,2009, 94: 083307
[13]  Lei Y L, Zhang Y, Liu R, et al. Driving current and temperature dependent magnetic-field modulated electroluminescence in Alq3-based organic light emitting diode. Org Electron, 2009, 10: 889-894
[14]  Xin L Y, Li C N, Li F, et al. Inversion of magnetic field effects on electrical current and electroluminescence in tris -(8-hydroxyquinoline) aluminum based light-emitting diodes. Appl Phys Lett, 2009, 95: 123306
[15]  Ding B F, Yao Y, Sun Z Y, et al. Magnetic field effects on the electroluminescence of organic light emitting devices: A tool to indicate the carrier mobility. Appl Phys Lett, 2010, 97: 163302
[16]  Bobbert P A, Nguyen T D, Wohlgenannt M, et al. Bipolaron mechanism for organic magnetoresistance. Phys Rev Lett, 2007, 99: 216801
[17]  Nguyen T D, Hukic-Markosian G, Wang F J, et al. Isotope effect in spin response of -conjugated polymer films and devices. Nat Mater,2010, 9: 345-352
[18]  Nguyen T D, Gautam B R, Ehrenfreund E, et al. Magnetoconductance response in unipolar and bipolar organic diodes at ultrasmall fields. Phys Rev Lett, 2010, 105: 166804
[19]  Wagemans W, Koopmans B. Spin transport and magnetoresistance in organic semiconductors. Phys Status Solid B, 2011, 248: 1029-1041
[20]  张勇, 李艳, 李盛慧, 等. 利用光磁共振实验测量地磁场强度. 西南师范大学学报(自然科学版), 2011, 36: 55-58
[21]  Hayashi H, Sakaguchi Y, Wakasa M. Magnetic field effects and spin dynamics of radical reactions in solution. Bull Chem Soc Jpn, 2001,74: 773-783
[22]  Kersten S P, Schellekens A J, Koopmans B, et al. Magnetic-field dependence of the electroluminescence of organic light-emitting diodes: A competition between exciton formation and spin mixing. Phys Rev Lett, 2011, 106: 197402

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133