全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

植物叶片最大羧化速率对多因子响应的模拟

DOI: 10.1360/972011-2449, PP. 1112-1118

Keywords: 叶片最大羧化速率,温度,土壤含水量,CO2,浓度,土壤含氮量

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物叶片最大羧化速率是表征植物光合能力的重要参数,建立植物叶片最大羧化速率的模拟模型将有助于准确预测植物的光合作用和陆地生态系统生产力.植物叶片最大羧化速率与环境因子之间存在诸多相关性,分析植物叶片最大羧化速率与环境因子的相关关系是建立植物叶片最大羧化速率模拟模型的有效途径.对来自104篇文献的植物叶片最大羧化速率数据及其对应的环境因子进行整理和分析发现,植物叶片最大羧化速率受温度、土壤含水量、CO2浓度以及土壤含氮量的显著影响.其中,温度、土壤含水量和CO2浓度均与植物叶片最大羧化速率呈单峰型曲线关系,土壤含氮量与植物叶片最大羧化速率呈显著的线性关系.据此,建立了温度、土壤含水量、CO2浓度以及土壤含氮量综合影响的植物叶片最大羧化速率模型.验证表明,该模型能较好地模拟不同环境条件下植物叶片的最大羧化速率,为陆地生态系统模型准确模拟植物光合作用提供了参数依据.

References

[1]  Sellers P J, Mintz Y, Sud Y C, et al. A simple biosphere model (SiB) for use within general circulation models. J Atmos Sci, 1986, 43:505-531
[2]  Neilson R P. A model for predicting continental-scale vegetation distribution and water balance. Ecol Appl, 1995, 5: 362-385
[3]  Prentice I C, Cramer W, Harrison S P, et al. A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr, 1992, 19: 117-134
[4]  Woodward F I. Climate and Plant Distribution. Cambridge: Cambridge University Press.[J]..1987,:-
[5]  Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363:234-240
[6]  Parton W J, Scurlock J M O, Ojima D S, et al. Observation and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob Biogeochem, 1993, 7: 785-809
[7]  Bonan G B. Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model[J].J Geophys Res.1995, 100:2817-2831
[8]  Warren C R, Adams M A, Chen Z L. Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native plants? Aust J Plant Physiol, 2000, 27: 407-416
[9]  薛晓萍, 王建国, 郭文琦, 等. 氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响. 生态学报, 2006, 11:3631-3640
[10]  Rodrigo G, Santamaria A, Bilenky M. Do the quark masses run? Extracting mb (mZ) from LEP data. Phys Rev Lett, 1997, 79: 193-196
[11]  Antonopoulos V Z. Comparison of different models to simulate soil temperature and moisture effects on nitrogen mineralization in the soil. J Plant Nutr Soil Sci, 1999, 162: 667-675
[12]  Strange C F. A novel approach to combine response functions in ecological process modelling. Ecol Modell, 2007, 204: 547-552
[13]  Li L, Vuichard N, Viovy N, et al. Importance of crop varieties and management practices: Evaluationo of a process-based model for simulating CO2 and H2O fluxes at five European maize (Zea mays L.) sites. Biogeosciences, 2011, 8: 1721-1736
[14]  Running S W, Hunt E R Jr. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer J R, Field C, eds. Scaling Processes Between Leaf and Landscape Levels. San Diego: Academic Press,1993. 141-158
[15]  周广胜, 王玉辉. 全球变化与气候-植被分类研究和展望[J].科学通报.1999, 44:2587-2593??浏览
[16]  Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthesis CO2 assimilation in leaves of C3 species. Planta,1980, 149: 78-90
[17]  Woodward F I, Smith T M, Emanuel W R. A global land primary productivity and phytogeography model. Glob Biochem Cycles, 1995, 9:471-490
[18]  Harley P C, Thomas R B, Reynolds J F, et al. Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ, 1992, 15:271-282
[19]  Maroco J P, Breia E, Faria T, et al. Effects of long-term exposure to elevated CO2 and N fertilization on the development of photosynthetic capacity and biomass accumulaton in Quercus suber L. Plant Cell Environ, 2002, 25: 105-113
[20]  Yamori W, Noguchi K, Terashima I. Temperature acclimation of photosynthesis in spinach leaves: Analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant Cell Environ, 2005, 28: 536-547
[21]  von Caemmerer S, Evans J R, Hudson J S, et al. The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta, 1994, 195: 88-97
[22]  Krischbaum M U F, Farquhar G D. Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. ex Spreng. Aust J Plant Physiol, 1984, 11: 519-538
[23]  Miglietta F, Giuntoli A, Bindi M. The effect of free air carbon dioxide enrichment (FACE) and soil nitrogen availability on the photosynthesis capacity of wheat. Photosynth Res, 1996, 47: 281-290
[24]  Bernacchi C J, Portis A R, Nakano H, et al. Temperature response of mesophyll conductance. Implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol, 2002, 130: 1992-1998
[25]  Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ, 1995, 18: 339-355
[26]  Robredo A, Perez-López U, Lacuesta M, et al. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biol Plant, 2010, 54: 285-292
[27]  Sharkey T D, Bernacchi C J, Farquhar G D. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ, 2007,30: 1035-1040
[28]  Dreyer E, Roux X L, Montpied P, et al. Temperature response of leaf photosynthetic capacity in seedings from seven temperate tree species. Tree Physiol, 2001, 21: 223-232
[29]  Silim S N, Ryan N, Kubien D S. Temperature response of photosynthesis and respiration in Populus balsamifera L.: Acclimation versus adaptation. Photosyn Res, 2010, 104: 19-30
[30]  Wolf A, Akshalov K, Saliendra N, et al. Inverse estimation of Vc max, leaf area index, and the Ball-Berry parameter from carbon and energy fluxes. J Geophys Res, 2006, 111: 1-18
[31]  周文佐. 基于GIS 的我国主要土壤类型土壤有效含水量研究. 硕士学位论文. 南京: 南京农业大学.[J]..2003,:-
[32]  Flexas J, Bota J, Galmés J, et al. Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiol Plant, 2006, 127: 343-352
[33]  高素华, 郭建平, 周广胜. 羊草叶片对高CO2 浓度和干旱胁迫的响应. 草地学报, 2001, 9: 203-211
[34]  王云龙, 许振柱, 周广胜. 水分胁迫对羊草光合产物分配及其气体交换特征的影响. 植物生态学报, 2004, 28: 803-809
[35]  Choi E Y, Seo T C, Lee S G, et al. Growth and physiological responses of Chinese cabbage and radish to long-term exposure to elevated carbon dioxide and temperature. Hort Environ Biotechonl, 2011, 52: 376-386
[36]  Krischbaum M U F. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol, 2011,155: 117-124
[37]  Tissue D T, Thomas R B, Strain B R. Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda: A 4-year experiment in the field. Plant Cell Environ, 1997, 20: 1123-1134
[38]  de Wit C T. Photosynthesis of leaf canopies. Agric Res Rep, 1965, 663: 1-57
[39]  郑凤英, 彭少麟. 植物生理生态指标对大气CO2 浓度倍增响应的整合分析. 植物学报, 2001, 43: 1101-1109

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133