全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

划蝽后翅翅面的超疏水性

DOI: 10.1360/972011-2636, PP. 1227-1230

Keywords: 划蝽,超疏水性,后翅面,阶层结构,接触角

Full-Text   Cite this paper   Add to My Lib

Abstract:

以生活在水中的昆虫划蝽为研究对象,发现在划蝽的腹部、背部及后翅面存在疏水、超疏水性,水滴在其后翅面的接触角达到159°,滚动角约为8°.结果显示,其腹部、背部及后翅面微纳米级阶层结构的存在是其形成疏水、超疏水性的关键因素,疏水、超疏水性能使其能在水中自由升降、正常呼吸或者当环境不利时飞离水面.用Cassie理论对其超疏水性机理进行了探讨与分析.

References

[1]  Satoh K, Nakazumi H, Morita M. Preparation of super-water-repellent fluorinated inorganic-organic coating films on nylon 66 by the sol-gel method using microphase separation. J Sol-Gel Sci Technol, 2003, 27: 327-332
[2]  Kako T, Nakajima A, Irie H, et al. Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels. J Mater Sci, 2004, 39: 547-555
[3]  Sun T, Feng L, Gao X F, et al. Bioinspired surfaces with special wettability. Acc Chem Res, 2005, 38: 644-652
[4]  Zhang X B, Zhao J, Zhu Q, et al. Bioinspired aquatic microrobot capable of walking on water surface like a water strider. ACS Appl Mater Interfaces, 2011, 3: 2630-2636
[5]  Cassie A B D, Baxter S. Wettability of porous surfaces. Trans Faraday Soc, 1944, 40: 546-551
[6]  Holdgate M W. The wetting of insect cuticles by water. J Exp Biol, 1955, 32: 591-617
[7]  Gao X F, Jiang L. Water-repellent legs of water striders. Nature, 2004, 432: 36 [2] Andrew R P, Chris R L. Water capture by a desert beetle. Nature, 2001, 414: 33-34 [3] Watson G S, Cribb B W, Watson J A. How micro/nanoarchitecture facilitates anti-wetting: An elegant hierarchical design on the termite wing. ACS Nano, 2010, 4: 129-136 [4] 姚昱星, 姚希, 李作林, 等. 蚊子体表面的微纳米结构与浸润性. 高等学校化学学报, 2008, 29: 1826-1828 [5] 孔祥清, 吴承伟. 蚊子腿表面多级微纳结构的超疏水特性[J].科学通报.2010, 55:1589-1594??浏览 [6] 石彦龙, 冯晓娟, 杨武, 等. 黄斑大蚊的喜湿性及其翅膀、腿表面的超疏水性[J].科学通报.2011, 56:1241-1245??浏览 [7] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202: 1-8 [8] Feng L, Li H S, Li Y, et al. Super-hydrophobic surfaces: From natural to artificial. Adv Mater, 2002, 14: 1857-1860 [9] ner D, McCarthy T J. Ultrahydrophobic surfaces effects of topography length scales on wettability. Langmuir, 2000, 16: 7777-7782 [10] Tsai H J, Lee Y L. Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces. Langmuir, 2007, 23:12687-12692 [11] Gau H, Herminghaus S, Lenz P, et al. Liquid morphologies on structured surfaces: From microchannels to microchips. Science, 1999, 283: 46-49 [12] Tuteja A, Choi W J, McKinley G H, et al. Design parameters for superhydrophobicity and superoleophobicity. MRS Bull, 2008, 33: 752-758 [13] Liu T, Chen S, Cheng S, et al. Superhydrophobic surfaces improve corrosion resistance of copper in seawater. Electrochim Acta, 2007, 52:3709-3713 [14] Kulkami S A, Ogale S B, Vijayamohanan K P. Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J Colloid Interface Sci, 2008, 318: 372-379 [15] Quere D. Non-sticking drops. Rep Prog Phys, 2005, 68: 2495-2532 [16] Satoh K, Nakazumi H, Morita M. Preparation of super-water-repellent fluorinated inorganic-organic coating films on nylon 66 by the sol-gel method using microphase separation. J Sol-Gel Sci Technol, 2003, 27: 327-332 [17] Kako T, Nakajima A, Irie H, et al. Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels. J Mater Sci, 2004, 39: 547-555 [18] Sun T, Feng L, Gao X F, et al. Bioinspired surfaces with special wettability. Acc Chem Res, 2005, 38: 644-652 [19] Zhang X B, Zhao J, Zhu Q, et al. Bioinspired aquatic microrobot capable of walking on water surface like a water strider. ACS Appl Mater Interfaces, 2011, 3: 2630-2636 [20] Cassie A B D, Baxter S. Wettability of porous surfaces. Trans Faraday Soc, 1944, 40: 546-551 [21] Holdgate M W. The wetting of insect cuticles by water. J Exp Biol, 1955, 32: 591-617
[8]  Gao X F, Jiang L. Water-repellent legs of water striders. Nature, 2004, 432: 36
[9]  Andrew R P, Chris R L. Water capture by a desert beetle. Nature, 2001, 414: 33-34
[10]  Watson G S, Cribb B W, Watson J A. How micro/nanoarchitecture facilitates anti-wetting: An elegant hierarchical design on the termite wing. ACS Nano, 2010, 4: 129-136
[11]  姚昱星, 姚希, 李作林, 等. 蚊子体表面的微纳米结构与浸润性. 高等学校化学学报, 2008, 29: 1826-1828
[12]  孔祥清, 吴承伟. 蚊子腿表面多级微纳结构的超疏水特性[J].科学通报.2010, 55:1589-1594??浏览
[13]  石彦龙, 冯晓娟, 杨武, 等. 黄斑大蚊的喜湿性及其翅膀、腿表面的超疏水性[J].科学通报.2011, 56:1241-1245??浏览
[14]  Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202: 1-8
[15]  Feng L, Li H S, Li Y, et al. Super-hydrophobic surfaces: From natural to artificial. Adv Mater, 2002, 14: 1857-1860
[16]  ner D, McCarthy T J. Ultrahydrophobic surfaces effects of topography length scales on wettability. Langmuir, 2000, 16: 7777-7782
[17]  Tsai H J, Lee Y L. Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces. Langmuir, 2007, 23:12687-12692
[18]  Gau H, Herminghaus S, Lenz P, et al. Liquid morphologies on structured surfaces: From microchannels to microchips. Science, 1999, 283: 46-49
[19]  Tuteja A, Choi W J, McKinley G H, et al. Design parameters for superhydrophobicity and superoleophobicity. MRS Bull, 2008, 33: 752-758
[20]  Liu T, Chen S, Cheng S, et al. Superhydrophobic surfaces improve corrosion resistance of copper in seawater. Electrochim Acta, 2007, 52:3709-3713
[21]  Kulkami S A, Ogale S B, Vijayamohanan K P. Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J Colloid Interface Sci, 2008, 318: 372-379
[22]  Quere D. Non-sticking drops. Rep Prog Phys, 2005, 68: 2495-2532

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133