Heilbronn R, Weger S. Viral vectors for gene transfer: Current status of gene therapeutics. Handb Exp Pharmacol, 2010, 197: 143-170
[2]
Evans D J. Exploitation of plant and archaeal viruses in bionanotechnology[J].Biochem Soc Trans.2009, 37(Pt 4):665-670
[3]
Hemminga M A, Vos W L, Nazarov P V, et al. Viruses: Incredible nanomachines. New advances with filamentous phages. Eur Biophys J Biophy, 2010, 39: 541-550
[4]
Lee S W, Mao C, Flynn C E, et al. Ordering of quantum dots using genetically engineered viruses. Science, 2002, 296: 892-895
[5]
Huang Y, Chiang C Y, Lee S K, et al. Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett, 2005,5: 1429-1434
[6]
Mao C, Flynn C E, Hayhurst A, et al. Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci USA, 2003, 100: 6946-6951
[7]
Mao C, Solis D J, Reiss B D, et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science,2004, 303: 213-217
[8]
Nam K T, Kim D W, Yoo P J, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science, 2006,312: 885-888
[9]
Whaley S R, English D S, Hu E L, et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 2000, 405: 665-668
[10]
Lee Y J, Yi H, Kim W J, et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science,2009, 324: 1051-1055
[11]
Nam K T, Wartena R, Yoo P J, et al. Stamped microbattery electrodes based on self-assembled M13 viruses. Proc Natl Acad Sci USA,2008, 105: 17227-17231
[12]
Wang Q, Lin T, Tang L, et al. Icosahedral virus particles as addressable nanoscale building blocks. Angew Chem Int Edit, 2002, 41:459-462
[13]
Wang Q, Lin T, Johnson J E, et al. Natural supramolecular building blocks. Cysteine-added mutants of cowpea mosaic virus. Chem Biol,2002, 9: 813-819
[14]
Cheung C L, Camarero J A, Woods B W, et al. Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J Am Chem Soc, 2003, 125: 6848-6849
[15]
Portney N G, Singh K, Chaudhary S, et al. Organic and inorganic nanoparticle hybrids. Langmuir, 2005, 21: 2098-2103
[16]
Medintz I L, Sapsford K E, Konnert J H, et al. Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir, 2005, 21: 5501-5510
[17]
Blum A S, Soto C M, Wilson C D, et al. Electronic properties of molecular memory circuits on a nanoscale scaffold. IEEE Trans Nanobiosci,2007, 6: 270-274
[18]
Steinmetz N F, Lomonossoff G P, Evans D J. Cowpea mosaic virus for material fabrication: Addressable carboxylate groups on a programmable nanoscaffold. Langmuir, 2006, 22: 3488-3490
[19]
Steinmetz N F, Findlay K C, Noel T R, et al. Layer-by-layer assembly of viral nanoparticles and polyelectrolytes: The film architecture is different for spheres versus rods. ChemBioChem, 2008, 9: 1662-1670
[20]
Destito G, Yeh R, Rae C S, et al. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol, 2007, 14:1152-1162
[21]
Portney N G, Martinez-Morales A A, Ozkan M. Nanoscale memory characterization of virus-templated semiconducting quantum dots. ACS Nano, 2008, 2: 191-196
[22]
Soto C M, Blum A S, Vora G J, et al. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J Nanosci Nanotechnol, 2006, 6: 2451-2460
[23]
Sapsford K E, Soto C M, Blum A S, et al. A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: Application as an immunoassay tracer. Biosens Bioelectron, 2006, 21: 1668-1673
[24]
Blum A S, Soto C M, Sapsford K E, et al. Molecular electronics based nanosensors on a viral scaffold. Biosens Bioelectron, 2011, 26:2852-2857
[25]
Destito G, Schneemann A, Manchester M. Biomedical nanotechnology using virus-based nanoparticles. Curr Top Microbiol, 2009, 327:95-122
[26]
Lee Y J, Lee Y, Oh D, et al. Biologically activated noble metal alloys at the nanoscale: For lithium ion battery anodes. Nano Lett, 2010,10: 2433-2440
[27]
Nam Y S, Shin T, Park H, et al. Virus-templated assembly of porphyrins into light-harvesting nanoantennae. J Am Chem Soc, 2010, 132:1462-1463
[28]
Nam Y S, Magyar A P, Lee D, et al. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nat Nanotechnol, 2010, 5: 340-344
[29]
Neltner B, Peddie B, Xu A, et al. Production of hydrogen using nanocrystalline protein-templated catalysts on M13 phage. ACS Nano,2010, 4: 3227-3235
[30]
Nam K T, Peelle B R, Lee S W, et al. Genetically driven assembly of nanorings based on the M13 virus. Nano Lett, 2004, 4: 23-27
[31]
Sweeney R Y, Park E Y, Iverson B L, et al. Assembly of multimeric phage nanostructures through leucine zipper interactions. Biotechnol Bioeng, 2006, 95: 539-545
[32]
H?lzel R, Gajovic-Eichelmann N, Bier F F. Oriented and vectorial immobilization of linear M13 dsDNA between interdigitated electrodes— Towards single molecule DNA nanostructures. Biosens Bioelectron, 2003, 18: 555-564
[33]
Nir H, Eichen Y, Schuster G. The construction of DNA molecules of figure-eight structure. Anal Biochem, 2005, 344: 86-91
[34]
Steinmetz N F, Evans D J. Utilisation of plant viruses in bionanotechnology. Org Biomol Chem, 2007, 5: 2891-2902
[35]
Royston E, Ghosh A, Kofinas P, et al. Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir, 2008, 24: 906-912
[36]
Tseng R J, Tsai C, Ma L, et al. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat Nanotechnol,2006, 1: 72-77
[37]
Steinmetz N F, Lin T, Lomonossoff G P, et al. Structure-based engineering of an icosahedral virus for nanomedicine and nanotechnology. Curr Top Microbiol, 2009, 327: 23-58
[38]
Leong H S, Steinmetz N F, Ablack A, et al. Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat Protoc,2010, 5: 1406-1417
[39]
Singh R, Kostarelos K. Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol, 2009, 27: 220-229
[40]
Asokan A, Johnson J S, Li C, et al. Bioluminescent virion shells: New tools for quantitation of AAV vector dynamics in cells and live animals. Gene Ther, 2008, 15: 1618-1622