全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

环北京春季大气气溶胶分布、来源及其与CCN转化关系的飞机探测

, PP. 1334-1344

Keywords: 气溶胶,CCN,飞机观测,粒子谱

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用2009年春季开展的“环北京云观测试验”(Beijingcloudexperiment,BCE)观测的气溶胶和云凝结核(CCN)数据,研究了试验期间大气气溶胶的分布、来源特征及其与云凝结核(CCN)的转化关系.结果表明,高浓度气溶胶基本分布在4500m以下的区域,量级可以达到103个/cm3.4500m以上气溶胶呈显著下降趋势,仅为101个/cm3的量级;气溶胶平均直径在0.16~0.19μm之间.4500m以下气溶胶平均粒子谱呈双(多)峰分布,而在4500m以上基本为单峰分布.受气溶胶的来源特性差异的影响,在0.3%的过饱和度下,4500m以下气溶胶转化为CCN比例不到20%,但在4500m以上可高达近50%.气团移动轨迹显示,4500m以上的大气高层均受到来自沙尘等较大尺度粒子的影响,飞机观测的高CCN浓度说明这种较大尺度气溶胶粒子可溶性较大.而4500m以下的低层,由于受到局地或区域地面污染的影响,气溶胶的尺度较小,核化为CCN的过饱和度要求较高,因此气溶胶到CCN的转化率低.本文建立了气溶胶浓度和CCN浓度的拟合关系.

References

[1]  1 Twomey S. The influence of pollution on shortwave albedo of clouds. J Atmos Sci, 1977, 34: 1149-1152??
[2]  3 IPCC. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press, 2007
[3]  4 Yum S S, Hudson J G. Maritime/continental microphysical contrasts in stratus. Tellus B-Chem Phys Meteorol, 2002, 54: 61-73??
[4]  5 Hudson J G, Yum S S. Maritime/continental drizzle contrasts in small cumuli. J Atmos Sci, 2001, 58: 915-926??
[5]  6 Hudson J G, Yum S S. Cloud condensation nuclei spectra and polluted and clean clouds over the Indian Ocean. J Geophys Res, 2002, 107, doi: 10.1029/2001JD000829
[6]  8 Raes F, Bates T, McGovern F, et al. The 2nd Aerosol Characterization Experiment (ACE-2): General overview and main results. Tellus B-Chem Phys Meteorol, 2000, 52: 111-125??
[7]  12 樊曙先, 安夏兰. 贺兰山地区云凝结核浓度的测量及分析. 中国沙漠, 2000, 20: 338-340
[8]  13 牛生杰, 章澄昌. 贺兰山地区春季沙尘气溶胶的化学组分和富集因子分析. 中国沙漠, 2000, 20: 264-268
[9]  15 牛生杰, 孙继明, 陈跃, 等. 贺兰山地区春季沙尘气溶胶质量浓度的观测分析. 高原气象, 2001, 20: 82-87
[10]  16 赵永欣, 牛生杰, 吕晶晶, 等. 2007年夏季我国西北地区云凝结核的观测研究. 高原气象, 2010, 29: 1043-1049
[11]  17 张佃国, 郭学良, 付丹红. 2003年8-9月北京及周边地区云系微物理飞机探测研究. 大气科学, 2007, 31: 596-610
[12]  18 范烨, 郭学良, 付丹红,等. 北京及周边地区2004年8、9月间大气气溶胶分布特征分析. 气候与环境研究, 2007, 12: 49-62
[13]  19 石立新, 段英. 华北地区云凝结核的观测研究. 气象学报, 2007, 65: 644-652
[14]  30 Rose D, Gunthe S S, Su H, et al. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China—Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles. Atmos Chem Phys, 2011, 11: 2817-2836
[15]  32 Deng Z Z, Zhao C S, Ma N, et al. Size-resolved and bulk activation properties of aerosols in the North China Plain. Atmos Chem Phys, 2011, 11: 3835-3846??
[16]  33 Shen X J, Sun J Y, Zhang Y M, et al. First long-term study of particle number size distributions and new particle formation events of re-gional aerosol in the North China Plain. Atmos Chem Phys, 2011, 11: 1565-1580??
[17]  35 Gultepe I, Isaac G A, Leaitch W R, et al. Parameterization of marine stratus of microphysics based on in situ observations: Implications for GCMS. J Clim, 1996, 9: 345-357??
[18]  41 Dusek U, Frank G P, Hildebrandt L, et al. Size matters more than chemistry for cloud nucleating ability of aerosol particles. Science, 2006, 312: 1375-1378??
[19]  44 Ramanathan V, Crutzen P J, Lelieveld J, et al. Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res, 2001, 106: 28371-28399??
[20]  45 Lu M L, Feingold G, Jonsson H H, et al. Aerosol-cloud relationships in continental shallow cumulus. J Geophys Res, 2008, 113, doi: 10.1029/2007JD009354
[21]  2 Albrecht B A. Aerosols, cloud microphysics, and fractional cloudiness. Science, 1989, 245: 1227-1230??
[22]  7 Bates T S, Huebert B J, Gras J L, et al. International Global Atmospheric Chemistry (IGAC) project’s First Aerosol Characterization Ex-periment (ACE 1): Overview. J Geophys Res, 1998, 103: 16297-16318??
[23]  9 Huebert B J, Bates T, Russell P B, et al. An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J Geophys Res, 2003, 108, doi: 10.1029/2003JD003550
[24]  10 Song K Y, Yum S S. Maritime-continental contrasts of cloud microphysics during ACE-Asia. J Korean Meteorol Soc, 2004, 40: 177-189
[25]  11 VanReken T M, Rissman T A, Roberts G C, et al. Toward aerosol/cloud condensation nuclei (CCN) closure during CRYSTAL-FACE. J Geophys Res, 2003, 108, doi: 10.1029/2003JD003582
[26]  14 牛生杰, 章澄昌, 孙继明. 贺兰山地区沙尘气溶胶粒子谱分布的观测研究. 大气科学, 2001, 25: 243-252
[27]  20 段婧, 毛节泰. 华北地区气溶胶对区域降水的影响. 科学通报, 2008, 53: 2947-2955
[28]  21 Zhang Q, Ma X, Tie X, et al. Vertical distributions of aerosols under different weather conditions: Analysis of in-situ aircraft measure-ments in Beijing, China. Atmos Environ, 2009, 43: 5526-5535??
[29]  22 Zhang Q, Quan J, Tie X, et al. Impact of aerosol particles on cloud formation: Aircraft measurements in China. Atmos Environ, 2011, 45: 665-672??
[30]  23 Ning D T, Zhong L X, Chung Y S. Aerosol size distribution and elemental composition in urban areas of Northern China. Atmos Environ, 1996, 30: 2355-2362??
[31]  24 Zhang R, Wang M, Fu J. Preliminary research on the size distribution of aerosols in Beijing. Adv Atmos Sci, 2001, 18: 225-230??
[32]  25 Guinot B, Roger J C, Cachier H, et al. Impact of vertical structure on Beijing aerosol distribution. Atmos Environ, 2006, 40: 5167-5180??
[33]  26 Wu Z, Hu M, Liu S, et al. New particle formation in Beijing, China: Statistical analysis of a 1-year data set. J Geophys Res, 2007, 112, doi: 10.1029/2006JD007406
[34]  27 Liu S, Hu M, Wu Z, et al. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China. Atmos Environ, 2008, 42: 6275-6283??
[35]  28 Qian Y, Gong D, Fan J, et al. Heavy pollution suppresses light rain in China: Observations and modeling. J Geophys Res, 2009, 114, doi: 10.1029/2008JD011575
[36]  29 Rose D, Nowak A, Achtert P, et al. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China—Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity. Atmos Chem Phys, 2010, 10: 3365-3383
[37]  31 Yu X, Zhu B, Yin Y, et al. A comparative analysis of aerosol properties in dust and haze-fog days in a Chinese urban region. Atmos Res, 2011, 99: 241-247??
[38]  34 Rose D, Gunthe S S, Mikhailov E, et al. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos Chem Phys, 2008, 8: 1153-1179??
[39]  36 Gultepe I, Isaac G A. Aircraft observations of cloud droplet number concentration: Implications for climate studies. Quart J Roy Meteorol Soc, 2004, 130: 2377-2390??
[40]  37 Hobbs P V, Rangno A L. Microstructures of low and middle-level clouds over the Beaufort Sea. Quart J Roy Meteorol Soc, 1998, 124: 2035-2071??
[41]  38 Rangno A L, Hobbs P V. Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart J Roy Meteorol Soc, 2005, 131: 639-673??
[42]  39 Stith J L, Haggerty J, Grainger C, et al. A comparison of the microphysical and kinematic characteristics of mid-latitude and tropical convective updrafts and downdrafts. Atmos Res, 2006, 82: 350-366??
[43]  40 Peter J R, Siems S T, Jensen J B, et al. Airborne observations of the effect of a cold front on the aerosol particle size distribution and new particle formation. Quart J Roy Meteorol Soc, 2010, 136: 944-961??
[44]  42 Draxler R R, Hess G D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust Met Mag, 1998, 47: 295-308
[45]  43 Chuang P Y, Collins D R, Pawlowska H, et al. CCN measurements during ACE-2 and their relationship to cloud microphysical properties. Tellus B-Chem Phys Meteorol, 2000, 52: 843-867??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133