全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

新型AgBr/BiOBr光催化剂的沉积-沉淀法制备、活性与机理

, PP. 1309-1316

Keywords: 复合催化剂,AgBr/BiOBr,沉积-沉淀法,甲基橙,反应机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用沉积-沉淀法将AgBr负载到BiOBr载体上,制备了新型的AgBr/BiOBr复合光催化剂.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)和紫外-可见漫反射光谱仪(DRS)对AgBr/BiOBr进行了表征.结果表明,AgBr/BiOBr由面心-立方相的AgBr和四方晶系的BiOBr颗粒构成,其中所负载的AgBr颗粒的平均晶粒尺寸小于28.5nm.随着AgBr含量的增加,AgBr/BiOBr在可见光区的吸收带边发生红移.光催化实验表明,AgBr/BiOBr在可见光下(λ>420nm)可以有效降解甲基橙溶液,当AgBr与BiOBr的摩尔百分比为50%时,AgBr/BiOBr具有最大催化活性,甲基橙的降解速率常数kapp为0.00619min-1.机理研究表明,·O2-在降解甲基橙过程中为主要活性物种,AgBr/BiOBr的催化活性增强主要归结为AgBr与BiOBr之间形成的异质结作用.

References

[1]  1 Inumaru K, Murashima M, Kasahara T, et al. Enhanced photocatalytic decomposition of 4-nonylphenol by surface-organografted TiO2: A combination of molecular selective adsorption and photocatalysis. Appl Catal B-Environ, 2004, 52: 275-280??
[2]  2 Yamazakia S, Moria T, Katoua T, et al. Photocatalytic degradation of 4-tert-octylphenol in water and the effect of peroxydisulfate as addi-tives. J Photochem Photobiol A-Chem, 2008, 199: 330-335??
[3]  3 Tsai W T, Lee M K, Su T Y, et al. Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J Hazard Mater, 2009, 168: 269-275??
[4]  4 Wang R, Ren D, Xia S, et al. Photocatalytic degradationof bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J Hazard Mater, 2009, 169: 926-932??
[5]  5 Zhao W, Ma W H, Chen C C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J Am Chem Soc, 2004, 126: 4782-4783??
[6]  7 Ho W, Yu J C, Lee S C. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J Solid State Chem, 2006, 179: 1171-1176??
[7]  9 Arabatzis I M, Stergiopoulos T, Bernard M C, et al. Silver modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl Catal B-Environ, 2003, 42: 187-201??
[8]  12 Tang J W, Zou Z G, Ye J H. Effects of substituting Sr2+ and Ba2+ for Ca2+ on the structural properties and photocatalytic behaviors of CaIn2O4. Chem Mater, 2004, 16: 1644-1649??
[9]  15 Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and tem-plate. J Hazard Mater, 2009, 167: 803-809??
[10]  16 Zhang J, Shi F J, Lin J, et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem Mater, 2008, 20: 2937-2941??
[11]  17 Zhang X, Ai Z H, Jia F L, et al. Generalized one-pot synthesis, characterization and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres. J Phys Chem C, 2008, 112: 747-753??
[12]  19 Chang X F, Huang J, Cheng C, et al. BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance. Catal Commun, 2010, 11: 460-464
[13]  20 An H Z, Du Y, Wang T M, et al. Photocatalytic properties of BiOX (X=Cl, Br, and I). Rare Metals, 2008, 27: 243-250??
[14]  21 Wang W D, Huang F Q, Lin X P, et al. Visible-light-responsive photocatalysts xBiOBr-(1-x)BiOI. Catal Commun, 2008, 9: 8-12??
[15]  24 Cheng H F, Huang B B, Dai Y, et al. One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir, 2010, 26: 6618-6624??
[16]  26 Chang X F, Yu G, Huang J, et al. Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy. Catal Today, 2010, 153: 193-199??
[17]  28 Chai S Y, Kim Y J, Jung M H, et al. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal, 2009, 262: 144-149??
[18]  29 Shamaila S, Sajjad A K L, Chen F, et al. WO3/BiOCl, a novel heterojunction as visible light photocatalyst. J Colloid Interface Sci, 2011, 356: 465-472??
[19]  30 Kakuta N, Goto N, Ohkita H, et al. Silver bromide as a photocatalyst for hydrogen generation from CH3OH/H2O solution. J Phys Chem B, 1999, 103: 517-519
[20]  32 Lan Y Q, Hu C, Hu X X, et al. Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation. Appl Catal B- Environ, 2007, 73: 354-360??
[21]  33 Elahifard M R, Rahimnejad S, Haghighi S, et al. Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. J Am Chem Soc, 2007, 129: 9552-9553??
[22]  36 Zhou X F, Hu C, Hu X X, et al. Plasmon-assited degradation of toxic pollutions with Ag-AgBr/Al2O3 under visible-light irradiation. J Phys Chem C, 2010, 114: 2746-2750??
[23]  38 Zang Y J, Farnood R, Currie J. Photocatalytic activities of AgBr/Y-zeolite in water under visible light irradiation. Chem Eng Sci, 2009, 64: 2881-2886??
[24]  41 Zhang L S, Wong K H, Chen Z G, et al. AgBr-Ag-Br2WO6 nanojunction system: A novel and efficient photocatalyst with double visible- light active components. Appl Catal A-Gen, 2009, 363: 211-229
[25]  42 Zhang L S, Wong K H, Yip H Y, et al. Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: The role of diffusing hydroxyl radicals. Environ Sci Technol, 2010, 44: 1392-1398
[26]  44 Cao J, Luo B D, Lin H L, et al. Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for me-thyl orange degradation. J Hazard Mater, 2011, 190: 700-706??
[27]  45 Victora R H. Calculated electronic structure of silver halide crystals. Phys Rev B, 1997, 56: 4417-4421??
[28]  48 Jiang R, Zhu H Y, Li X D, et al. Visible light photocatalytic decolourization of C. I. Acid Red 66 by chitosan capped CdS composite na-noparticles. Chem Eng J, 2009, 152: 537-542
[29]  49 Dong X, Ding W, Zhang X, et al. Mechanism and kinetics model of degradation of synthetic dyes by UV-vis/H2O2/Freeioxallate com-plexes. Dye Pigments, 2007, 74: 470-476??
[30]  51 Sun J H, Wang X L, Sun J Y, et al. Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. J Mol Catal A-Chem, 2006, 260: 241-246??
[31]  54 Butler M A, Ginley D S. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J Electrochem Soc, 1978, 125: 228-232??
[32]  55 Chang X F, Huang J, Tan Q Y, et al. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation. Catal Commun, 2009, 10: 1957-1961??
[33]  6 Yu J C, Ho W K, Yu J G, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol, 2005, 39: 1175-1179??
[34]  8 Sun Q, Xu Y M. Sensitization of TiO2 with aluminum phthalocyanine: Factors influencing the efficiency for chlorophenol degradation in water under visible light. J Phys Chem C, 2009, 113: 12387-12394??
[35]  10 Ishibai Y, Sato J, Nishikawa T, et al. Synthesis of visible-light active TiO2 photocatalyst with Pt-modification: Role of TiO2 substrate for high photocatalytic activity. Appl Catal B-Environ, 2008, 79: 117-121??
[36]  11 Li G S, Zhang D Q, Yu J C. Ordered mesoporous BiVO4 through anocasting: A superior visible light-driven photocatalyst. Chem Mater, 2008, 20: 3983-3992??
[37]  13 Yamasita D, Takata T, Hara M, et al. Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics, 2004, 172: 591-595??
[38]  14 Shi R, Lin J, Wang Y J, et al. Visible-light photocatalytic degradation of BiTaO4 photocatalyst and mechanism of photocorrosion suppres-sion. J Phys Chem C, 2010, 114: 6472-6477??
[39]  18 Jiang Z, Yang F, Yang G D, et al. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange. J Photochem Photobiol A-Chem, 2010, 212: 8-13??
[40]  22 Henle J, Simon P, Frenzel A, et al. Nanosized BiOX (X=Cl, Br, I) particles synthesized in reverse microemulsions. Chem Mater, 2007, 19: 366-373??
[41]  23 Zhang X, Zhang L Z, Xie T F, et al. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 het-erostructures. J Phys Chem C, 2009, 113: 7371-7378??
[42]  25 Li Y Y, Wang J S, Yao H C, et al. Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. Catal Commun, 2011, 12: 660-664??
[43]  27 Zhang L, Wang W Z, Zhou L, et al. Fe3O4 coupled BiOCl: A highly efficient magnetic photocatalyst. Appl Catal B-Environ, 2009, 90: 458-462??
[44]  31 Hu C, Lan Y Q, Qu J H, et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B, 2006, 110: 4066-4072??
[45]  34 Zang Y J, Ramin F. Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation. Appl Catal B-Environ, 2008, 79: 334-340??
[46]  35 Pourahmad A, Sohrabnezhad S, Kashefian E. AgBr/nanoAlMCM-41 visible light photocatalyst for degradation of methylene blue dye. Spectrochim Acta Part A, 2010, 77: 1108-1114??
[47]  37 Rodrigues S, Uma S, Martyanov I N, et al. AgBr/Al-MCM-41 visible-light photocatalyst for gas-phase decomposition of CH3CHO. J Catal, 2005, 233: 405-410??
[48]  39 Li G T, Wong K H, Zhang X W, et al. Degradation of acid orange 7 using magnetic AgBr under visible light: the roles of oxidizing species. Chemosphere, 2009, 76: 1185-1191??
[49]  40 Wang P, Huang B B, Qin X Y, et al. Ag/AgBr/WO3·H2O: Visible-light photocatalyst for bacteria destruction. Inorg Chem, 2009, 48: 10697-10702??
[50]  43 Asi M A, He C, Su M H, et al. Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catal Today, 2011, 175: 256-263??
[51]  46 Cheng H F, Huang B B, Wang P, et al. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decon-tamination of pollutants. Chem Commun, 2011, 47: 7054-7056??
[52]  47 Galceran M, Pujol M C, Zaldo C, et al. Synthesis, structural, and optical properties in monoclinic Er:KYb(WO4)2 nanocrystals. J Phys Chem C, 2009, 113: 15497-15506
[53]  50 Li Y, Li X, Li J, et al. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res, 2006, 40: 1119-1126??
[54]  52 Wu C, Chang H, Chen J. Basic dye decomposition kinetics in a photocatalytic slurry reactor. J Hazard Mater, 2006, 137: 336-343??
[55]  53 Zhang N, Liu S Q, Fu X Z, et al. Synthesis of M@TiO2 (M=Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J Phys Chem C, 2011, 115: 9136-9145??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133