4 Cranwell P A. Lipid geochenmistry of sediments from Upton Broad, a small productive lake. Org Geochem, 1984, 7: 25-37 ??
[4]
5 Meyers P A, Takemura K. Quaternary changes in delivery and accumulation of organic matter in sediments of Lake Biwa, Japan. J Paleo-limnol, 1997, 18: 211-218
7 Xie S, Nott C J, Avsejs L A, et al. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat. Org Geochem, 2000, 31: 1053-1057??
13 Polissar P J, Freeman K H. Effects of aridity and vegetation on plant-wax δD in modern lake sediments. Geochim Cosmochim Acta, 2010, 74: 5785-5797??
[9]
14 Chikaraishi Y, Naraoka H. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 2003, 63: 361-371??
[10]
15 Hou J Z, D’Andrea W J, MacDonald D, et al. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA). Org Geochem, 2007, 38: 977-984??
[11]
17 Krull E, Sachse D, Mügler I, et al. Compound-specific δ13C and δ2H analyses of plant and soil matter: A preliminary assessment of the effects of vegetation change on ecosystem hydrology. Soil Biol Biochem, 2006, 38: 3211-3221??
19 Luo P, Peng P A, Gleixner G, et al. Empirical relationship between leaf wax n-alkane δD and altitude in the Wuyi,Shennongjia and Tianshan Mountains, China: Implications for paleoaltimetry. Earth Planet Sci Lett, 2011, 301: 285-296??
[14]
21 Pagani M, Pedentchouk N, Huber M, et al. Arctic hydrology during global warming at the Palaeocene/ Eocene thermal maximum. Nature, 2006, 442: 671-675??
[15]
24 McInernery F, Helliker B R, Freeman K H. Hydrogen isotope ratios of leaf wax n-alkanes in grasses are insensitive to transpiration. Geo-chim Cosmochim Acta, 2011, 75: 541-554??
[16]
25 Koch K, Neinhuis C, Ensikat H J, et al. Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM). J Exp Bot, 2004, 55: 711-718??
[17]
27 Richardson A, Franke R, Kerstiens G, et al. Cuticular wax deposition in growing barley (Hordeum vulgare) leaves commences in relation to the point of emergence of epidermal cells from the sheaths of older leaves. Planta, 2005, 222: 472-483??
32 Burgoyne T W, Hayes J M. Quantitative production of H-2 by pyrolysis of gas chromatographic effluents. Anal Chem, 1998, 70: 5136-5141??
[20]
36 Hou S G, Qin D H, Wake C P. Abrupt decrease in recent snow accumulation at Mount Qomolangma (Everst), Himalaya. J Glaciol, 1999, 45: 585-586
[21]
39 Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Org Geochem, 2003, 34: 261-289??
[22]
40 Baas M, Pancost R, van Geel B, et al. A comparative study of lipids in Sphagnum species. Org Geochem, 2000, 31: 535-541??
[23]
47 Thompson L G, Yao T, Mosley-Thompson E, et al. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science, 2000, 289: 1916-1919??
[24]
56 Huang Y, Shuman B, Wang Y, et al. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and envi-ronmental change: A surface sediment test. J Paleolimnol, 2004, 31: 363-375??
[25]
2 Eglinton G, Hamilton R J. Leaf epicuticular waxes. Science, 1967, 156: 1322-1335??
10 Sachse D, Radke J, Gleixner G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient — Implications for the sedimentary biomarker record. Org Geochem, 2006, 37: 469-483??
[28]
11 Hou J Z, D’Andrea W J, Huang Y S. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and ex-perimental assessments. Geochim Cosmochim Acta, 2008, 72: 3503-3517??
[29]
12 Smith F A, Freeman K H. Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochim Cosmochim Acta, 2006, 70: 1172-1187??
[30]
16 Liu W, Yang H, Li L. Hydrogen isotopic compositions of n-alkanes from terrestrial plants correlate with their ecological life forms. Oecologia, 2006, 150: 330-338??
[31]
20 Rao Z, Zhu Z, Jia G, et al. Compound specific δD values of long chain n-alkanes derived from terrestrial higher plants are indicative of the δD of meteoric waters: Evidence from surface soils in eastern China. Org Geochem, 2009, 40: 922-930??
[32]
22 Tian L, Yao T, Schuster P F, et al. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res, 2003, 108: 4293, doi:10.1029/2002JD002173??
[33]
23 Sachse D, Kahmen A, Gleixner G. Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two decidu-ous tree ecosystems (Fagus sylvativa and Acer pseudoplatanus). Org Geochem, 2009, 40: 732-742??
[34]
26 Gulz P G. Epicuticular leaf waxes in the evolution of the plant kingdom. J Plant Physiol, 1994, 143: 453-464??
33 Hilkert A W, Douthitt C B, Schluter H J, et al. Isotope ratio monitoring gas chromatography mass spectrometry of D/H by high tempera-ture conversion isotope ratio mass spectrometry. Rapid Commun Mass Sp, 1999, 13: 1226-1230??
[39]
34 Appleby P G, Oldfield F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Ca-tena, 1978, 5: 1-8
[40]
35 Yao T D, Thompson LG. Trends and features of climatic changes in the past 5000 years recorded by the Dunde ice core. Ann Glaciol, 1992, 16: 2-24
[41]
37 Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments - II. Org Geochem, 1987, 11: 513-527??
[42]
38 Han J, Calvin M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc Natl Acad Sci USA, 1969, 64: 436-437??
[43]
41 Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 2000, 31: 745-749??
[44]
42 Duan K, Yao T, Thompson L G. Low-frequency of southern Asian monsoon variability using a 295-year record from the Dasuopu ice core in the central Himalayas. Geophys Res Lett, 2004, 31: L1629, doi: 10.1029/2004GL020015
[45]
43 Thompson L G, Mosley-Thompson E, Davis M E, et al. Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim Change, 2003, 59: 137-155??
45 Liu W G, Huang Y S. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau. Org Geochem, 2005, 36: 851-860??
[48]
46 Polissar P J, Freeman K H. Effects of aridity and vegetation on plant-wax δD in modern lake sediments. Geochim Cosmochim Acta, 2010, 74: 5785-5797??
[49]
48 Aizen V, Aizen E M, Melack J, et al. Isotopic measurements of precipitation on central Asian glaciers (southeastern Tibet, northern Hi-malayas, central Tien Shan). J Geophys Res, 1996, 101: 9185-9196??
[50]
49 Aizen V B, Aizen E M, Joswiak D R, et al. Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol, 2006, 43: 49-59??
[51]
50 Zhao H, Xu B, Yao T, et al. Deuterium excess record in a southern Tibetan ice core and its potential climatic implications. Clim Dyn, 2011, doi: 10.1007/s00382-011-1161-7
[52]
51 Craig H. Isotopic variations in meteoric waters. Science, 1961, 133: 1702-1703??
[53]
52 Mügler I, Sachse D, Werner M, et al. Effect of lake evaporation on δD values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Org Geochem, 2008, 39: 711-729??
[54]
53 Shuman B, Huang Y S, Newby P, et al. Compound specific isotopic analyses track changes in the seasonality of precipitation in the Northeastern United States at ca 8200 cal yr BP. Quat Sci Rev, 2006, 25: 2992-3002??
[55]
54 Schefuβ E, Schouten S, Schneider R R. Climatic controls on central African hydrology during the 20000 years. Nature, 2005, 437: 1003-1006??
[56]
55 Huang Y, Shuman B, Wang Y, et al. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late Quaternary climate varia-tions. Geology, 2002, 30: 1103-1106??