全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

藏南地区降水量变化对陆源正构烷烃单体氢稳定同位素影响初探

, PP. 1353-1361

Keywords: 正构烷烃,氢稳定同位素,湖芯,冰芯

Full-Text   Cite this paper   Add to My Lib

Abstract:

在藏南羊卓雍错流域的沉错和宁金岗桑冰川分别钻取了浅湖芯和冰芯,对过去80年来湖芯中记录的陆源正构烷烃单体氢稳定同位素(δDwax)与冰芯氢稳定同位素(δDice)进行比较,发现二者具有较好的相关性(R2=0.41,P=0.047),显示了陆生植物叶蜡正构烷烃单体氢稳定同位素对大气降水氢稳定同位素的继承效应.但δDwax与δDice之间的分馏(εwax-ice)与冰芯积累量(降水量)呈现反相关关系(R2=0.65,P=0.0051),说明气候的干湿变化对δDwax有显著的影响.因此降水稳定同位素和降水量是影响δDwax的两个重要因素.

References

[1]  1 Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochim Cosmochim Acta, 2004, 68: 4877-4889??
[2]  3 崔景伟, 黄俊华, 谢树成. 湖北清江现代植物叶片正构烷烃和烯烃的季节性变化. 科学通报, 2008, 53: 1318-1323
[3]  4 Cranwell P A. Lipid geochenmistry of sediments from Upton Broad, a small productive lake. Org Geochem, 1984, 7: 25-37 ??
[4]  5 Meyers P A, Takemura K. Quaternary changes in delivery and accumulation of organic matter in sediments of Lake Biwa, Japan. J Paleo-limnol, 1997, 18: 211-218
[5]  6 蒲阳, 张虎才, 王永莉, 等. 青藏高原冰蚀湖沉积物正构烷烃记录的气候和环境变化信息: 以西门错为例. 科学通报, 2011, 56: 1132-1139
[6]  7 Xie S, Nott C J, Avsejs L A, et al. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat. Org Geochem, 2000, 31: 1053-1057??
[7]  9 林晓, 朱立平, 汪勇, 等. 西藏纳木错湖芯正构烷烃及其反映的8.4 ka以来的环境变化. 科学通报, 2008, 53: 2352-2357
[8]  13 Polissar P J, Freeman K H. Effects of aridity and vegetation on plant-wax δD in modern lake sediments. Geochim Cosmochim Acta, 2010, 74: 5785-5797??
[9]  14 Chikaraishi Y, Naraoka H. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 2003, 63: 361-371??
[10]  15 Hou J Z, D’Andrea W J, MacDonald D, et al. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA). Org Geochem, 2007, 38: 977-984??
[11]  17 Krull E, Sachse D, Mügler I, et al. Compound-specific δ13C and δ2H analyses of plant and soil matter: A preliminary assessment of the effects of vegetation change on ecosystem hydrology. Soil Biol Biochem, 2006, 38: 3211-3221??
[12]  18 段毅, 吴保祥. 中国大陆主要植物中单体正构烷烃氢同位素组成及其与环境关系研究. 科学通报, 2008, 53: 2776-2781
[13]  19 Luo P, Peng P A, Gleixner G, et al. Empirical relationship between leaf wax n-alkane δD and altitude in the Wuyi,Shennongjia and Tianshan Mountains, China: Implications for paleoaltimetry. Earth Planet Sci Lett, 2011, 301: 285-296??
[14]  21 Pagani M, Pedentchouk N, Huber M, et al. Arctic hydrology during global warming at the Palaeocene/ Eocene thermal maximum. Nature, 2006, 442: 671-675??
[15]  24 McInernery F, Helliker B R, Freeman K H. Hydrogen isotope ratios of leaf wax n-alkanes in grasses are insensitive to transpiration. Geo-chim Cosmochim Acta, 2011, 75: 541-554??
[16]  25 Koch K, Neinhuis C, Ensikat H J, et al. Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM). J Exp Bot, 2004, 55: 711-718??
[17]  27 Richardson A, Franke R, Kerstiens G, et al. Cuticular wax deposition in growing barley (Hordeum vulgare) leaves commences in relation to the point of emergence of epidermal cells from the sheaths of older leaves. Planta, 2005, 222: 472-483??
[18]  28 王君波, 朱立平. 藏南沉错钻孔沉积物金属元素分布特征及其与粒度的关系. 湖泊科学, 2008, 20: 715-722
[19]  32 Burgoyne T W, Hayes J M. Quantitative production of H-2 by pyrolysis of gas chromatographic effluents. Anal Chem, 1998, 70: 5136-5141??
[20]  36 Hou S G, Qin D H, Wake C P. Abrupt decrease in recent snow accumulation at Mount Qomolangma (Everst), Himalaya. J Glaciol, 1999, 45: 585-586
[21]  39 Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Org Geochem, 2003, 34: 261-289??
[22]  40 Baas M, Pancost R, van Geel B, et al. A comparative study of lipids in Sphagnum species. Org Geochem, 2000, 31: 535-541??
[23]  47 Thompson L G, Yao T, Mosley-Thompson E, et al. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science, 2000, 289: 1916-1919??
[24]  56 Huang Y, Shuman B, Wang Y, et al. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and envi-ronmental change: A surface sediment test. J Paleolimnol, 2004, 31: 363-375??
[25]  2 Eglinton G, Hamilton R J. Leaf epicuticular waxes. Science, 1967, 156: 1322-1335??
[26]  8 龙利群, 方小敏, 苗运法, 等. 新生代全球变冷背景下北部青藏高原变冷和干旱化事件: 西宁盆地早第三纪沉积物中正构烷烃和孢粉的记录. 科学通报, 2011, 56: 1221-1231
[27]  10 Sachse D, Radke J, Gleixner G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient — Implications for the sedimentary biomarker record. Org Geochem, 2006, 37: 469-483??
[28]  11 Hou J Z, D’Andrea W J, Huang Y S. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and ex-perimental assessments. Geochim Cosmochim Acta, 2008, 72: 3503-3517??
[29]  12 Smith F A, Freeman K H. Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochim Cosmochim Acta, 2006, 70: 1172-1187??
[30]  16 Liu W, Yang H, Li L. Hydrogen isotopic compositions of n-alkanes from terrestrial plants correlate with their ecological life forms. Oecologia, 2006, 150: 330-338??
[31]  20 Rao Z, Zhu Z, Jia G, et al. Compound specific δD values of long chain n-alkanes derived from terrestrial higher plants are indicative of the δD of meteoric waters: Evidence from surface soils in eastern China. Org Geochem, 2009, 40: 922-930??
[32]  22 Tian L, Yao T, Schuster P F, et al. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res, 2003, 108: 4293, doi:10.1029/2002JD002173??
[33]  23 Sachse D, Kahmen A, Gleixner G. Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two decidu-ous tree ecosystems (Fagus sylvativa and Acer pseudoplatanus). Org Geochem, 2009, 40: 732-742??
[34]  26 Gulz P G. Epicuticular leaf waxes in the evolution of the plant kingdom. J Plant Physiol, 1994, 143: 453-464??
[35]  29 罗日升, 曹峻, 刘耕年, 等. 西藏枪勇冰下富碎屑化学沉淀特征与冰下过程. 地理学报, 2003, 58: 757-764
[36]  30 中国科学院青藏高原综合科学考察队. 西藏植被. 北京: 科学出版社, 1988. 182-203
[37]  31 李婧波. 宁金刚桑地区冰芯中浅层粉尘的初步研究. 硕士学位论文. 西安: 长安大学, 2009. 3??
[38]  33 Hilkert A W, Douthitt C B, Schluter H J, et al. Isotope ratio monitoring gas chromatography mass spectrometry of D/H by high tempera-ture conversion isotope ratio mass spectrometry. Rapid Commun Mass Sp, 1999, 13: 1226-1230??
[39]  34 Appleby P G, Oldfield F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Ca-tena, 1978, 5: 1-8
[40]  35 Yao T D, Thompson LG. Trends and features of climatic changes in the past 5000 years recorded by the Dunde ice core. Ann Glaciol, 1992, 16: 2-24
[41]  37 Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments - II. Org Geochem, 1987, 11: 513-527??
[42]  38 Han J, Calvin M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc Natl Acad Sci USA, 1969, 64: 436-437??
[43]  41 Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem, 2000, 31: 745-749??
[44]  42 Duan K, Yao T, Thompson L G. Low-frequency of southern Asian monsoon variability using a 295-year record from the Dasuopu ice core in the central Himalayas. Geophys Res Lett, 2004, 31: L1629, doi: 10.1029/2004GL020015
[45]  43 Thompson L G, Mosley-Thompson E, Davis M E, et al. Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim Change, 2003, 59: 137-155??
[46]  44 姚檀栋, 秦大河, 田立德, 等. 青藏高原2 ka来温度与降水变化——古里雅冰芯记录. 中国科学D辑: 地球科学, 1996, 26: 348-353
[47]  45 Liu W G, Huang Y S. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau. Org Geochem, 2005, 36: 851-860??
[48]  46 Polissar P J, Freeman K H. Effects of aridity and vegetation on plant-wax δD in modern lake sediments. Geochim Cosmochim Acta, 2010, 74: 5785-5797??
[49]  48 Aizen V, Aizen E M, Melack J, et al. Isotopic measurements of precipitation on central Asian glaciers (southeastern Tibet, northern Hi-malayas, central Tien Shan). J Geophys Res, 1996, 101: 9185-9196??
[50]  49 Aizen V B, Aizen E M, Joswiak D R, et al. Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol, 2006, 43: 49-59??
[51]  50 Zhao H, Xu B, Yao T, et al. Deuterium excess record in a southern Tibetan ice core and its potential climatic implications. Clim Dyn, 2011, doi: 10.1007/s00382-011-1161-7
[52]  51 Craig H. Isotopic variations in meteoric waters. Science, 1961, 133: 1702-1703??
[53]  52 Mügler I, Sachse D, Werner M, et al. Effect of lake evaporation on δD values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Org Geochem, 2008, 39: 711-729??
[54]  53 Shuman B, Huang Y S, Newby P, et al. Compound specific isotopic analyses track changes in the seasonality of precipitation in the Northeastern United States at ca 8200 cal yr BP. Quat Sci Rev, 2006, 25: 2992-3002??
[55]  54 Schefuβ E, Schouten S, Schneider R R. Climatic controls on central African hydrology during the 20000 years. Nature, 2005, 437: 1003-1006??
[56]  55 Huang Y, Shuman B, Wang Y, et al. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late Quaternary climate varia-tions. Geology, 2002, 30: 1103-1106??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133