全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

藏南聂拉木高喜马拉雅结晶岩系上部韧性变形年代学及地质意义

, PP. 1562-1574

Keywords: 高喜马拉雅结晶岩系上部(UHCS),藏南拆离断层剪切带(STDsz),聂拉木拆离断层(ND),锆石-独居石U-Th/Pb年龄,变形迁移

Full-Text   Cite this paper   Add to My Lib

Abstract:

藏南拆离断层系(STDS)为低角度正断层,其上盘为特提斯喜马拉雅沉积岩系,下盘为高喜马拉雅结晶岩系.厘定与STDS有关的变形时限,对深入理解喜马拉雅造山带的变形机制与构造演化具重要意义.聂拉木拆离断层(ND)(86°E)位于STDS中段(81°~89°E),ND下盘不同构造位置(即采样点位与ND的构造距离)的变形花岗质岩脉具有一定程度的同构造特征,锆石-独居石U-Th/Pb年龄可以不同程度地厘定变形时间(1)样品T11N37(ND下盘约3500m构造位置)的侵位年龄为27.4±0.2Ma;(2)样品T11N32(ND下盘约1400m构造位置)的侵位年龄为22.0±0.3Ma;(3)样品T11N25(ND下盘约150m构造位置)的侵位年龄为17.1±0.2Ma,结合ND下盘冷却历史和T11N25变形温度,认为其变形最晚开始时间约为16Ma.年代学结果表明,变形作用的最晚开始时间由下盘往拆离面逐渐变年轻.因此提出ND下盘变形迁移的新模式,即ND下盘在约27.5Ma之前开始纯剪切为主的变形作用,随后变形以约0.3mm/a的速率向拆离面移动,并于约18Ma在藏南拆离断层剪切带(STDsz)底部转化为简单剪切变形为主.由于ND变形结束于14~13Ma,这意味着北向剪切作用的持续时限小于约5Ma,对下地壳流动模型提出新的挑战.

References

[1]  1 Burg J P, Brunel M, Gapais D, et al. Deformation of leucogranites of the crystalline Main Central Sheet in Southern Tibet (China). J Struct Geol, 1984, 6: 535-542??
[2]  8 Harrison T M, Grove M, McKeegan K D, et al. Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya. J Petrol, 1999, 40: 3-19??
[3]  11 Hodges K, Bowring S, Davidek K, et al. Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges. Geology, 1998, 26: 483-486??
[4]  13 Kali E, Leloup P H, Arnaud N, et al. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature-deformation-time constraints on orogenic models. Tectonics, 2010, 29: 1-31
[5]  14 Leloup P H, Maheo G, Arnaud N, et al. The South Tibet Detachment shear zone in the Dinggye area Time constraints on extrusion models of the Himalayas. Earth Planet Sci Lett, 2010, 292: 1-16??
[6]  17 Sakai H, Sawada M, Takigami Y, et al. Geology of the summit limestone of Mount Qomolangma (Everest) and cooling history of the Yellow Band under the Qomolangma Detachment. Isl Arc, 2005, 14: 297-310??
[7]  21 Wang Y, Li Q, Qu G S. 40Ar/39Ar thermochronological constraints on the cooling and exhumation history of the South Tibetan Detachment System, Nyalam area, southern Tibet. In: Law R D, Searle M P, Godin L, eds. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geol Soc, London, 2006, 268: 327-354??
[8]  22 于俊杰, 曾令森, 刘静, 等. 藏南定结地区早中新世淡色花岗岩的形成机制及其构造动力学意义. 岩石学报, 2011, 27: 1961-1972
[9]  26 Burchfiel B C, Chen Z, Hodges K V, et al. Detachment System, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol Soc Am Spec Publ, 1992, 269: 1-41
[10]  27 Burg J P. Carte Géologique du Sud Tibet. In: Mo Geology/CNRS, ed. Ministry of Geology/CNRS, Beijing/Paris 1983
[11]  28 Carosi R, Lombardo B, Molli G, et al. The South Tibetan Detachment System in the Rongbuk valley, Everest region. Deformation features and geological implications. J Asian Earth Sci, 1998, 16: 299-311??
[12]  31 Harris N B W, Caddick M, Kosler J, et al. The pressure-temperature-time path of migmatites from the Sikkim Himalaya. J Metamorph Geol, 2004, 22: 249-264??
[13]  32 Godin L, Grujic D, Law R D, et al. Channel flow, ductile extrusion and exhumation in continental collision zones: An introduction. In: Law R D, Searle M P, Godin L, eds Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geol Soc, London Spec Publ, 2006, 268: 1-23??
[14]  33 尹安. 喜马拉雅造山带新生代构造演化: 沿走向变化的构造几何形态、剥露历史和前陆沉积的约束. 地学前缘, 2006, 13: 416-515
[15]  35 Law R D, Jessup M J, Searle M P, et al. Telescoping of isotherms beneath the South Tibetan Detachment System, Mount Everest Massif. J Struct Geol, 2011, 33: 1569-1594??
[16]  37 Sch?rer U, Xu R H, Allegre C J. U-(Th)-Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth Planet Sci Lett, 1986, 77: 35-48??
[17]  38 Wang A, Garver J I, Wang G C, et al. Episodic exhumation of the Greater Himalayan Sequence since the Miocene constrained by fission track thermochronology in Nyalam, central Himalaya. Tectonophysics, 2010, 495: 315-323??
[18]  41 Seydoux-Guillaume A M, Wirth R, Deutsch A, et al. Microstructure of 24-1928 Ma concordant monazites: Implications for geochronology and nuclear waste deposits. Geochim Cosmochim Acta, 2004, 68: 2517-2527??
[19]  43 Paquette J L, Tiepolo M. High resolution (5 μm) U-Th-Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol, 2007, 240: 222-237??
[20]  45 Ludwig K R. Isoplot 3.00 a Geochronological Toolkit for Microsoft Excel. Berkley Geoch Cent Spec Pub, 2003. 4
[21]  46 Tera F, Wasserburg G J. U-Th-Pb systematics in 3 Apollo 14 basalts and problem of initial Pb in Lunar rocks. Earth Planet Sci Lett, 1972,14: 281-304??
[22]  50 Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Sci Rev, 2003, 61: 1-18??
[23]  54 Getty S R, Depaolo D J. Quaternary geochronology using the U-Th-Pb method. Geochim Cosmochim Acta, 1995, 59: 3267-3272??
[24]  55 Stern R A, Sanborn N. Monazite U-Pb and Th-Ph geochronology by high-resolution secondary ion mass spectrometry. In: radiogenic age and isotopic studies. Ottawa: Curr Res Geol Surv, 1998, 11: 1-18
[25]  57 Spear F S, Parrish R R. Petrology and cooling rates of the Valhalla complex, British Columbia, Canada. J Petrol, 1996, 37: 733-765??
[26]  59 Cocherie A, Mezeme E B, Legendre O, et al. Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites. Am Mineral 2005, 90: 607-618??
[27]  60 Foster G, Gibson H D, Parrish R, et al. Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chem Geol, 2002, 191: 183-207??
[28]  61 Clemens J D, Vielzeuf D. Constraints on melting and magma production in the crust. Earth Planet Sci Lett, 1987, 86: 287-306??
[29]  63 Scaillet B, Pichavant M, Roux J. Experimental crystallization of leucogranite magmas. J Petrol, 1995, 36: 663-705
[30]  64 Searle MP. Emplacement of Himalayan leucogranites by magma injection along giant sill complexes: Examples from the Cho Oyu, Gyachung Kang and Everest leucogranites (Nepal Himalaya). J Asian Earth Sci, 2000, 17: 773-783
[31]  65 Smith H A, Giletti B J. Lead diffusion in monazite. Geochim Cosmochim Acta, 1997, 61: 1047-1055??
[32]  71 Agard P, Augier R, Monie P. Shear band formation and strain localization on a regional scale: Evidence from anisotropic rocks below a major detachment (Betic Cordilleras, Spain). J Struct Geol, 2011, 33: 114-131??
[33]  72 Behr W M, Platt J P. A naturally constrained stress profile through the middle crust in an extensional terrane. Earth Planet Sci Lett, 2011,303: 181-192??
[34]  75 Leloup P H, Liu X B, Mahéo G, et al. Quantification of progressive deformation localization below the STD shear zone (Himalaya). Geophys Res Abs, 2012, 14: EGU2012-10235
[35]  42 Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol, 2004, 211: 47-69??
[36]  44 Wiedenbeck M, Alle P, Corfu F, et al. 3 natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostandard Newslett, 1995, 19: 1-23
[37]  47 Claoué-Long J, Compston W, Roberts J, et al. Two carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggren W A, Kent D V, Aubry M P, et al, eds. Geochronology, Time Scales & Stratigraphic Correlation. SEPM Spec Publ, 1995, 54: 1-22
[38]  48 Cherniak D J, Watson E B. Pb diffusion in zircon. Chem Geol, 2001, 172: 5-24??
[39]  49 Lee J K W, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon. Nature, 1997, 390: 159-162??
[40]  51 Hodges K V, Burchfiel B C, Royden L H, et al. The metamorphic signature of contemporaneous extension and shortening in the Central Himalayan Orogen-data from the Nyalam Transect, Southern Tibet. J Metamorph Geol, 1993, 11: 721-737??
[41]  52 Parrish R R. U-Pb dating of monazite and its application to geological problems. Can J Earth Sci, 1990, 27: 1431-1450??
[42]  53 Sch?rer U. The effect of initial 230Th disequilibrium on young U-Pb ages: The Makalu case, Himalaya. Earth Planet Sci Lett, 1984, 67: 191-204??
[43]  56 Copeland P, Parrish R R, Harrison T M. Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics. Nature, 1988, 333: 760-763??
[44]  58 Braun I, Montel J M, Nicollet C. Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India. Chem Geol, 1998, 146: 65-85??
[45]  62 Montel J M. A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol, 1993, 110: 127-146??
[46]  66 Viskupic K, Hodges K V, Bowring S A. Timescales of melt generation and the thermal evolution of the Himalayan metamorphic core, Everest region, eastern Nepal. Contrib Mineral Petrol, 2005, 149: 1-21??
[47]  67 Kelsey D E, Clark C, Hand M. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: Examples using model metapelitic and metapsammitic granulites. J Metamorph Geol, 2008, 26: 199-212??
[48]  68 Orejana D, Merino E, Villaseca C, et al. Electron microprobe monazite geochronology of granitic intrusions from the Montes de Toledo batholith (central Spain). Geol J, 2012, 47: 41-58??
[49]  69 Daniel C G, Hollister L S, Parrish R R, et al. Exhumation of the Main Central Thrust from lower crustal depths, eastern Bhutan Himalaya. J Metamorph Geol, 2003, 21: 317-334??
[50]  70 Law R D, Searle M P, Simpson R L. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet. J Geol Soc London, 2004, 161: 305-320??
[51]  73 Cooper F J, Platt J P, Platzman E S, et al. Opposing shear senses in a subdetachment mylonite zone: Implications for core complex mechanics. Tectonics, 2010, 29: 1-18
[52]  74 Davis G A. Rapid upward transport of mid-crustal mylonitic gneisses in the footwall of a Miocene Detachment Fault, Whipple Mountains, Southeastern California. Geol Rundsch, 1988, 77: 191-209??
[53]  2 Brown R L, Nazarchuk J H. Annapurna detachment fault in the Greater Himalaya of Central Nepal. Geol Soc Sp, 1993, 74: 461-473??
[54]  3 Cottle J M, Jessup M J, Newell D L, et al. Structural insights into the early stages of exhumation along an orogen-scale detachment: The South Tibetan Detachment System, Dzakaa Chu section, eastern Himalaya. J Struct Geol, 2007, 29: 1781-1797??
[55]  4 Cottle J M, Searle M P, Horstwood M S A, et al. Timing of midcrustal metamorphism, melting, and deformation in the mount Everest region of Southern Tibet revealed by U(-Th)-Pb geochronology. J Geol, 2009, 117: 643-664??
[56]  5 Godin L, Brown R L, Hanmer S, et al. Back folds in the core of the Himalayan orogen: An alternative interpretation. Geology, 1999, 27: 151-154??
[57]  6 Godin L, Parrish R R, Brown R L, et al. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from U-Pb Geochronology and 40Ar/39Ar Thermochronology. Tectonics, 2001, 20: 729-747??
[58]  7 Guillot S, Hodges K, Lefort P, et al. New constraints on the age of the Manaslu leucogranite: Evidence for episodic tectonic denudation in the central Himalayas. Geology, 1994, 22: 559-562??
[59]  9 Harrison T M, Mckeegan K D, Lefort P. Detection of inherited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe dating-crystallization age and tectonic implications. Earth Planet Sci Lett, 1995, 133: 271-282??
[60]  10 Harrison T M, Ryerson F J, LeFort P, et al. A late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism. Earth Planet Sci Lett, 1997, 146: E1-E7??
[61]  12 Hodges K V, Parrish R R, Searle M P. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics, 1996, 15:1264-1291??
[62]  15 Murphy M A, Harrison T M. Relationship between leucogranites and the Qomolangma Detachment in the Rongbuk Valley, south Tibet. Geology, 1999, 27: 831-834??
[63]  16 Noble S R, Searle M P. Age of crustal melting and leucogranite formation from U-Pb zircon and monazite dating in the western Himalaya, Zanskar. India Geol, 1995, 23: 1135-1138
[64]  18 Searle M P, Godin L. The South Tibetan Detachment and the Manaslu leucogranite: A structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. J Geol, 2003, 111: 505-523??
[65]  19 Searle M P, Parrish R R, Hodges K V, et al. Shisha Pangma leucogranite, south Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. J Geol, 1997, 105: 295-317??
[66]  20 Streule M J, Searle M P, Waters D J, et al. Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: Constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics, 2010, 29: TC5011
[67]  23 Coleman M E. U-Pb constraints on oligocene-miocene deformation and anatexis within the central Himalaya, Marsyandi valley, Nepal. Am J Sci, 1998, 298: 553-571??
[68]  24 Yang X Y, Zhang J J, Qi G W, et al. Structure and deformation around the Gyirong basin, north Himalaya, and onset of the South Tibetan Detachment System. Sci China Ser D-Earth Sci, 2009, 52: 1046-1058??
[69]  25 Cottle J M, Waters D J, Riley D, et al. Metamorphic history of the South Tibetan Detachment System, Mt. Everest region, revealed by RSCM thermometry and phase equilibria modelling. J Metamorph Geol, 2011, 29: 561-582??
[70]  29 Edwards M A, Kidd W S F, Li J X, et al. Multi-stage development of the Southern Tibet Detachment System near Khula Kangri. New data from Gonto La. Tectonophysics, 1996, 260: 1-19??
[71]  30 Zhang J J, Santosh M, Wang X X, et al. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Res, 2012, 21: 939-960??
[72]  34 朱同兴, 邹光富, 李建忠, 等. 聂拉木县幅区域地质调查报告(1: 250000). 北京: 地质出版社, 2002. 1-363??
[73]  36 Wu C D, Nelson K D, Wortman G, et al. Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89°-90°E). Tectonics, 1998, 17: 28-45??
[74]  39 Stipp M, Stunitz H, Heilbronner R, et al. The eastern Tonale fault zone: A “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700 degrees C. J Struct Geol, 2002, 24: 1861-1884??
[75]  40 Tullis J A, Yund R A. The brittle-ductile transition in feldspar aggregates: An experimental study. In: Evans B, Wong T F, eds. Fault Mechanics and Transport Properties of Rocks. London: Academic Press, 1992. 89-117

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133