全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

九龙江口营养盐的分布、通量及其年代际变化

, PP. 1575-1587

Keywords: 九龙江口,营养盐,通量,年代际变化

Full-Text   Cite this paper   Add to My Lib

Abstract:

于2008年4月至2011年4月对九龙江河口的营养盐进行了8个航次的调查,包含丰水期(5~9月)和枯水期(10月~次年4月).结果表明,九龙江口上游营养盐浓度很高(硝酸盐NO3-N120~230μmol/L,亚硝酸盐NO2-N5~15μmol/L,氨氮NH4-N15~170μmol/L,磷酸盐SRP1.2~3.5μmol/L,硅酸盐DSi200~340μmol/L),且枯水期高于丰水期.NO3-N是溶解态无机氮(DIN)的主要组分,枯水期NO3-N可占DIN的55%~72%,而丰水期该比例则高达67%~96%.NO3-N和DSi在盐度1~32的河口混合区基本呈现保守混合行为.SRP在盐度1~25的区域浓度变化很小(1.0~2.0μmol/L),在盐度>25的区域则被相对低营养盐的近海海水所稀释.利用高分辨率的径流量资料和淡水端实测营养盐浓度,计算出九龙江DIN,SRP和DSi的入河口通量分别为34.3×103tN/a,0.63×103tP/a和72.7×103tSi/a;而通过将营养盐在高盐段的保守混合规律外推至零盐度估算河口输出有效浓度的方法,估算出九龙江口营养盐的入海通量分别为34.8×103tN/a,0.82×103tP/a,71.6×103tSi/a.利用LOICZ推荐的营养盐收支模式方法,估算调查期间九龙江口对SRP的添加量为0.16×103tP/a.与世界其他河流对比,九龙江流域单位面积上的NO3-N产率处于较高水平.与历史数据相比,近10余年来九龙江口上、中游NO3-N和SRP的浓度增加2~3倍,而DSi浓度在九龙江口盐度梯度上的分布则改变不大.这种营养盐年代际变化与密西西比河DIN和SRP升高而DSi浓度大幅度下降的变化特征很不相同.

References

[1]  3 Turner R E, Rabalais N N. Changes in Mississippi River water quality this century——Implications for coastal food webs. BioScience, 1991, 41: 140-147??
[2]  4 张经. 关于陆-海相互作用的若干问题. 科学通报, 2011, 56: 1956-1966
[3]  5 Duan S W, Xu F, Wang L J. Long-term changes in nutrient concentrations of the Changjiang River and principal tributaries. Biogeochemistry, 2007, 85: 215-234??
[4]  6 Li M T, Xu K Q, Watanabe M, et al. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuar Coast Shelf Sci, 2007, 71: 3-12??
[5]  11 Anderson D M. Turning back the harmful red tide. Nature, 1997, 388: 513-514??
[6]  12 Kaushal S S, Groffman P M, Band L E, et al. Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland. Environ Sci Technol, 2008, 42: 5872-5878??
[7]  13 Kaushal S S, Pace M L, Groffman P M, et al. Land use and climate variability amplify contaminant pulses. EOS Trans Am Geophys Union, 2010, 91: 221-222??
[8]  15 孟登科. 千座水电站遗祸九龙江. 珠江水运, 2011, 11: 44-47
[9]  17 Huang J L, Li Q S, Pontius R G, et al. Detecting the dynamic linkage between landscape characteristics and water quality in a subtropical coastal watershed, southeast China. Environ Manage, 2011, doi: 10.1007/s00267-011-9793-2
[10]  18 Hong H S, Yang L Y, Guo W D, et al. Characterization of dissolved organic matter under contrasting hydrologic regimes in a subtropical watershed using PARAFAC model. Biogeochemistry, 2011, doi: 10.1007/s10533-011-9617-8
[11]  19 李法西, 吴瑜端, 王隆发, 等. 河口硅酸盐物理化学过程研究Ⅰ. 活性硅含量分布变化及其影响因素的初步探讨. 海洋与湖沼, 1964, 6: 311-322
[12]  20 陈水土, 阮五崎, 张立平. 九龙江口诸营养盐要素的化学特性及其入海通量估算. 热带海洋, 1985, 4: 16-24
[13]  22 洪华生, 戴民汉, 陈水土. 春季厦门港、九龙江口各种形态磷的分布与转化. 海洋环境科学, 1989, 2: 1-8
[14]  23 Hong H S, Lin J. Preliminary study on the distribution of nutrients, organic matter, trace metals in sea surface microlayer in Xiamen Bay and Jiulong Estuary. Acta Oceanol Sin, 1990, 1: 81-90
[15]  28 陈淑美, 卢美鸾, 傅天保. 九龙江口水体中各形态磷的行为. 台湾海峡, 1997, 16: 299-305
[16]  32 蔡爱智, 蔡月娥, 朱孝宁, 等. 福建九龙江口入海泥沙的扩散和河口湾的现代沉积. 海洋地质与第四纪地质, 1991, 11: 57-67
[17]  33 Cao W Z, Hong H S, Yue S P. Modelling agricultural nitrogen contributions to the Jiulong River estuary and coastal water. Glob Planet Change, 2005, 47: 111-121??
[18]  34 US EPA. Sample preservation. In: US EPA, ed. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, 1983. xv-xx
[19]  42 Zhang J. Nutrient elements in large Chinese estuaries. Cont Shelf Res, 1996, 16: 1023-1045??
[20]  43 沈焕庭. 长江河口物质通量. 北京: 海洋出版社, 2001. 137-153
[21]  45 姚庆祯, 于志刚, 王婷, 等. 调水调沙对黄河下游营养盐变化规律的影响. 环境科学, 2009, 30: 3534-3540
[22]  46 Officer C B. Discussion of the behaviour of nonconservative dissolved of constituents in estuaries. Estuar Coast Mar Sci, 1979, 9: 91-94 ??
[23]  51 Wang H J, Yang Z S, Saito Y, et al. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob Planet Change, 2006, 50: 212-225??
[24]  1 Billen G, Garnier J, Deligne C, et al. Estimates of early-industrial inputs of nutrients to river systems: Implication for coastal eutrophication. Sci Total Environ, 1999, 243/244: 43-52
[25]  2 Jickells T D. Nutrient biogeochemistry of the coastal zone. Science, 1998, 281: 217-222??
[26]  7 李茂田, 程和琴. 近50年来长江入海溶解硅通量变化及其影响. 中国环境科学, 2001, 21: 193-197
[27]  8 Liu K K, Atkinson L, Quinones R A, et al. Biogeochemistry of continental margins in a global context. In: Liu K-K, Atkinson L, Quinones R A, et al, eds. Carbon and nutrient fluxes in continental margins ——A Global Synthesis. The IGBP series. Heidelberg: Springer, 2010. 3-24
[28]  9 Justic D, Rabalais N N, Turner R E. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar Pollut Bull, 1995, 30: 41-46??
[29]  10 Díaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321: 926-929??
[30]  14 黄秀琴. 九龙江流域水文特性. 水利科技, 2008, 1: 16-20
[31]  16 朱俊雄. 九龙江北溪水电站建设对下游干流枯水径流量影响. 中国水能及电气化, 2007, 3: 7-10
[32]  21 暨卫东, 黄尚高, 王伟强. 九龙江口硝酸盐的增补现象. 海洋通报, 1987, 2: 19-22
[33]  24 陈水土. 九龙江口、厦门西海域无机氮与磷的关系. 海洋通报, 1993, 5: 26-32
[34]  25 陈水土, 吴丽云, 吴佳伟. 九龙江口海域中磷的化学形态分布. 热带海洋, 1994, 1: 69-75
[35]  26 陈松, 廖文卓, 骆炳坤, 等. 九龙江河口区磷的转移和入海通量. 台湾海峡, 1996, 15: 137-142
[36]  27 杨逸萍, 胡明辉. 九龙江口的地球化学研究. 见: 张经, 主编. 中国主要河口的生物地球化学研究——化学物质的迁移与环境. 北京: 海洋出版社, 1996. 54-57
[37]  29 陈松, 廖文卓, 许爱玉. 九龙江口水体中1995年磷的转移. 台湾海峡, 1998, 17: 71-75
[38]  30 杨逸萍, 胡明辉, 陈海龙, 等. 九龙江口生物可利用磷的行为与入海通量. 台湾海峡, 1998, 17: 269-274
[39]  31 张远辉, 王伟强, 黄自强. 九龙江口盐度锋面及其营养盐的化学行为. 海洋环境科学, 1999, 4: 1-7
[40]  35 Dai M H, Wang L F, Guo X H, et al. Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: The Pearl River estuary, China. Biogeosciences, 2008, 5: 1227-1244??
[41]  36 Pai S C, Tsau Y J, Yang T I. pH and buffering capacity problems involved in the determination of ammonia in saline water using the idophenol blue spectrophotometric method. Analyt Chim Acta, 2001, 434: 209-216 ??
[42]  37 Froelich P N, Bender M L, Luedtke N A. The marine phosphorus cycle. Am J Sci, 1982, 282: 474-511??
[43]  38 van der Zee C, Roevros N, Chou L. Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium /The Netherlands) form the freshwater tidal limits to the North Sea. Mar Chem, 2007, 106: 76-91??
[44]  39 王伟强, 黄尚高, 顾德宇, 等. 福建九龙江口河海水混合特征. 台湾海峡, 1986, 5: 10-17
[45]  40 Chai C, Yu Z M, Shen Z L, et al. Nutrient characteristics in the Yangtze River estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam. Sci Total Environ, 2009, 407: 4687-4695??
[46]  41 Liu S M, Hong G H, Zhang J, et al. Nutrient budgets for large Chinese estuaries. Biogeosciences, 2009, 6: 2245-2263??
[47]  44 沈志良. 长江干流营养盐通量的初步研究. 海洋与湖沼, 1997, 28: 522-528
[48]  47 Pernetta J C , Milliman J D. LOICZ Implementation Plan. IGBP Report No.33, Stockholm, 1995
[49]  48 Gordon D C, Boudreau P R, Mann K H, et al. LOICZ Biogeochemical Modeling Guidelines. LOICZ/R&S/95-5, 1996
[50]  49 Peierls B L, Caraco N F, Pace M L, et al. Human influence on river nitrogen. Nature, 1991, 350: 386-387
[51]  50 Wen L S, Jiann K T, Liu K K. Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river. Estuar Coast Shelf Sci, 2008, 78: 694-704??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133