全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

末次冰期以来全球陆地植被中C3/C4植物相对丰度时空变化基本特征及其可能的驱动机制

, PP. 1633-1645

Keywords: C3/C4,植物,全球,末次冰期以来,驱动因素,温度

Full-Text   Cite this paper   Add to My Lib

Abstract:

末次冰期以来的陆地植被中C3/C4植物相对丰度变化的主要驱动因素曾被广泛的争论,尽管越来越多的研究者认同气候因素,而不是大气CO2浓度,是最主要的驱动因素.但对于某一具体的研究区域而言,温度还是降水是最主要的驱动因素,仍存在不同的认识.由于具体的研究区域,温度和降水的变幅相对有限,且经常协同变化,因此从更广阔的空间尺度来对有关研究结果进行总结,或许可获得更清晰的认识.对全球末次冰期以来的C3/C4植物相对丰度变化记录进行梳理,发现其存在明显的规律性,即除地中海式气候地区外;在高纬度地区,末次冰期以来,均以C3植物占绝对优势;在中纬度地区,末次冰期至全新世,C4植物相对丰度上升;而低纬度地区,末次冰期至全新世,C4植物相对丰度下降.结合现代过程研究结果,探讨了末次冰期以来陆地植被C3/C4植物相对丰度变化的驱动机制,认为在末次冰期以来的大气CO2浓度背景下,温度是C3/C4植物相对丰度的首要控制因素,温度条件满足之后,则水分条件成为主要控制因素.这些认识对于将来获得的更高分辨率的过去C3/C4植物相对丰度记录的气候环境信息解译,以及在可靠的温度和大气CO2浓度背景条件下,理解更长时间尺度的C3/C4植物相对丰度变化的驱动机制,均具有一定的意义.

References

[1]  1 Denies P. The isotopic composition of reduced organic carbon. In: Fritz P, Fontes J C, eds. Handbook of Environmental Isotope Geochemistry, Vol. 1, The Terrestrial Environment. Amsterdam: Elsevier Scientific Publishing Company, 1980. 339-345
[2]  2 O’Leary M H. Carbon isotope fractionation in plants. Phytochemistry, 1981, 20: 553-567??
[3]  4 Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol Mol Biol, 1989, 40:503-537??
[4]  8 Cerling T E, Harris J M, MacFadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary. Nature, 1997, 389: 153-158??
[5]  10 Jolly D, Haxeltine A. Effect of low glacial atmospheric CO2 on tropical African montane vegetation. Science, 1997, 276: 786-788??
[6]  13 Damsté J S S, Verschuren D, Ossebaar J, et al. A 25000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes. Earth Planet Sci Lett, 2011, 302: 236-246??
[7]  16 林本海, 安芷生, 刘荣谟. 最近60 万年中国黄土高原季风变迁的稳定同位素证据. 见: 刘东生, 安芷生, 编. 黄土·第四纪地质·全 球变化(第三集). 北京: 科学出版社, 1992. 51-54
[8]  21 Huang Y S, Street-Perrott F A, Perrott R A, et al. Glacial-interglacial environmental changes inferred from molecular and compound- specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya. Geochim Cosmochim Acta, 1999, 63: 1383-1404??
[9]  22 Ficken K J, Street-Perrott F A, Perrott R A, et al. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa. Org Geochem, 1998, 29: 1701-1719??
[10]  23 Olago D O, Street-Perrott F A, Perrott R A, et al. Late Quaternary glacial-interglacial cycle of climatic and environmental change on Mount Kenya, Kenya. J Afr Earth Sci, 1999, 29: 593-618??
[11]  25 Salzmann U, Hoelzmann P, Morczinek I. Late quaternary climate and vegetation of the Sudanian Zone of Northeast Nigeria. Quat Res,2002, 58: 73-83??
[12]  27 Ambrose S H, Sikes N E. Soil carbon isotope evidence for Holocene habitat change in the Kenya Rift Valley. Science, 1991, 253: 1402-1405??
[13]  32 Makou M C, Hughen K A, Xu L, et al. Isotopic records of tropical vegetation and climate change from terrestrial vascular plant biomarkers preserved in Cariaco Basin sediments. Org Geochem, 2007, 38: 1680-1691??
[14]  34 Liu W G, Huang Y S, An Z S, et al. Summer monsoon intensity controls C4/C3 plants abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 220:243-254??
[15]  35 陈发虎, 饶志国, 张家武, 等. 陇西黄土高原末次冰期有机碳同位素变化及其意义. 科学通报, 2006, 51: 1310-1317
[16]  36 Stewart G R, Turnbull M H, Schmidt S, et al. 13C natural abundance in plant communities along a rainfall gradient: A biological integrator of water availability. Aust J Plant Physiol, 1995, 22: 51-55??
[17]  37 王国安, 韩家懋, 刘东生. 中国北方黄土区C3 草本植物同位素组成研究. 中国科学D 辑: 地球科学, 2003, 33: 550-556
[18]  40 Melillo J M, Aber J D, Linkins A E, et al. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant Soil, 1989, 115: 189-198??
[19]  41 Yamada K, Ishiwatari R. Carbon isotopic composition of long-chain n-alkanes in the Japan Sea sediments: Implication for paleoenvironmental changes over the past 85 kyr. Org Geochem, 1999, 30: 367-377??
[20]  42 Krishnamurthy R V, DeNiro M J. Isotope evidence for Pleistocene climatic changes in Kashmir, India. Nature, 1982, 298: 640-641??
[21]  48 Olson C G, Porter D A. Isotopic and Geomorphic evidence for Holocene Climate, Southwestern Kansas. Quat Int, 2002, 87: 29-44??
[22]  49 Ratnayake N P, Suzuki N, Okada M, et al. The variations of stable carbon isotope ratio of land plant-derived n-alkanes in deep-sea sediments from the Bearing Sea and the North Pacific Ocean during the last 250000 years. Chem Geol, 2006, 228: 197-208??
[23]  3 O’Leary M H. Carbon isotope in photosynthesis. BioScience, 1988, 38: 328-336??
[24]  5 Sage R F, Wedin D A, Li M R. The biogeography of C4 photosynthesis: Patterns and controlling factors. In: Sage R F, Monson R K, eds. C4 Plan Biology. San Diego: Academic Press, 1999. 313-373
[25]  6 Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 1989, 342: 163-166??
[26]  7 Cerling T E, Wang Y, Quade J. Expansion of C4 ecosystems as in indicator of global ecological change in the late Miocene. Nature, 1993,361: 344-345??
[27]  9 Street-Perrott F A, Huang Y S, Perrott R A, et al. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science,1997, 278: 1422-1426??
[28]  11 Huang Y S, Street-Perrott F A, Metcalfe S E, et al. Climate change as the dominant control on glacial-interglacial variation in C3 and C4 plant abundance. Science, 2001, 293: 1647-1651??
[29]  12 Casta?eda I S, Werne J P, Johnson T C, et al. Late Quaternary vegetation history of southeast Africa: The molecular isotopic record from Lake Malawi. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 275: 100-112??
[30]  14 Boom A, Marchant R, Hooghiemstra H, et al. CO2- and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2. Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 177: 151-168??
[31]  15 Mora G, Pratt L M. Carbon isotopic evidence from paleosols for mixed C3/C4 vegetation in the Bogota Basin, Colombia. Quat Sci Rev,2002, 21: 985-995??
[32]  17 林本海, 刘荣谟. 最近800 ka 黄土高原夏季风变迁的稳定同位素证据. 科学通报, 1992, 18: 1691-1693
[33]  18 顾兆炎, 刘强, 许冰, 等. 气候变化对黄土高原末次盛冰期以来的C3/C4 植物相对丰度的控制. 科学通报, 2003, 48: 1458-1464
[34]  19 Zhang Z H, Zhao M X, Lu H Y, et al. Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau. Earth Planet Sci Lett, 2003, 214: 467-481??
[35]  20 Huang Y S, Freeman K H, Eglinton T I, et al. δ13C analyses of individual lignin phenols in Quaternary lake sediments: A novel proxy for deciphering past terrestrial vegetation changes. Geology, 1999, 27: 471-474??
[36]  24 Ficken K J, Woller M J, Swain D L, et al. Reconstruction of a subalpine grass-dominated ecosystem, Lake Rutundu, Mt. Kenya: A novel multi-proxy approach. Palaeogeogr Palaeoclimatol Palaeoecol, 2002, 177: 137-149??
[37]  26 Aucour A-M, Bonnefille R, Hillaire-Marcel C. Sources and accumulation rates of organic carbon in an equatorial peat bog (Burundi, East Africa) during the Holocene: Carbon isotope constraints. Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 150: 179-189??
[38]  28 Maitima J M. Vegetation response to climatic change in Central Rift Valley, Kenya. Quat Res, 1991, 35: 234-245??
[39]  29 Kaars S V D, Dam R. Vegetation and climate change in West-java, Indonesia during the last 135000 years. Quat Int, 1997, 37: 67-71
[40]  30 Galy V, Fran?ois L, France-Lanord C, et al. C4 plants decline in the Himalayan basin since the Last Glacial Maximum. Quat Sci Rev, 2008,27: 1396-1409??
[41]  31 Hughen K A, Eglinton T I, Xu L, et al. Abrupt tropical vegetation response to rapid climate changes. Science, 2004, 304: 1955-1959??
[42]  33 Vidic N J, Monta?ez I P. Climatically driven glacial-interglacial variations in C3 and C4 plant proportions on the Chinese Loess Plateau. Geology, 2004, 32: 337-340??
[43]  38 Diefendorfa A F, Muellerb K E, Wing S L, et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc Natl Acad Sci USA, 2010, 107: 5738-5743??
[44]  39 Wang G A, Feng X, Han J M, et al. Paleovegetation reconstruction using δ13C of soil organic matter. Biogeosciences, 2008, 5: 1325-1337??
[45]  43 Krishnamurthy R V, Bhattacharya S K. Paleovegetational history in the Kashmir basin, India, derived from 13C/12C ratio in paleosols. Earth Planet Sci Lett, 1989, 95: 291-296
[46]  44 Johnson W C, Willey K L. Isotopic and rock magnetic expression of environmental change at the Pleistocene-Holocene transition in the central Great Plains. Quat Int, 2000, 67: 89-106??
[47]  45 Nordt L C, Boutton T W, Hallmark C T, et al. Late Quaternary vegetation and climate changes in central texas based on the isotopic composition of organic carbon. Quat Res, 1994, 41: 109-120??
[48]  46 Nordt L C, Boutton T W, Jacob J S, et al. C4 plant productivity and climate-CO2 variation in South-central Texas during the Late Quaternary. Quat Res, 2002, 58: 182-188??
[49]  47 Driese S G, Li Z H, Horn S P. Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23000 14C yr BP paleosol and floodplain soils, southeastern West Virginia, USA. Quat Res, 2005, 63: 136-149??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133