全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

基于椭圆形微裂纹演化与汇合的准脆性材料本构模型

, PP. 1978-1986

Keywords: 微裂纹,损伤,演化,汇合

Full-Text   Cite this paper   Add to My Lib

Abstract:

微裂纹演化与汇合是导致准脆性材料损伤及破坏的主要因素.采用复势函数法求解了受远场载荷作用下代表性单元中椭圆微裂纹的变形,讨论了椭圆微裂纹初始取向的变化对微裂纹尺寸增长和偏转角度的影响,并结合微裂纹扩展准则推导了损伤起始的临界应力.基于翼型裂纹扩展过程的能量守恒方程,建立了损伤阶段的本构关系.对裂纹汇合模式进行了讨论,建立了翼型裂纹汇合的几何模型,由翼型裂纹汇合的临界条件给出了断裂失效应变,最后给出了与细观结构演变过程相对应的本构模型,并应用该模型计算了岩石类材料单轴压缩下的应力应变曲线,与实验结果吻合良好.

References

[1]  2 Liu H F, Liu H Y, Song W D. Fracture characteristics of concrete subjected to impact loading. Sci China-Phys Mech Astron, 2010, 53:253-261??
[2]  3 Fanella D, Krajcinovic D. A micromechanical model for concrete in compression. Eng Fract Mech, 1988, 29: 49-66??
[3]  5 Krajcinovic D, Sumarac D. A mesomechanical model for brittle deformation processes: Part Iand II. J Appl Mech, 1989, 56: 51-62??
[4]  6 Sumarac D, Krajcinovic D. A self-consistent model for microcrack-weakened solids. Mech Mater, 1897, 6: 39-52
[5]  7 Ju J W, Lee X. Micromechanical damage models for brittle solids I: Tensile loadings. J Eng Mech, 1991, 117: 1495-1514??
[6]  9 Ju J W. On two-dimensional self-consistent micromechanical damage models for brittle solids. Int J Solids Struct, 1991, 27: 227-258??
[7]  10 Horii H, Nemat-Nasser S. Overall moduli of solidswith microcracks: Load-induced anisotropy. J Mech Phys Solids, 1983, 31: 155-171??
[8]  11 Horii H, Nemat-Nasser S. Brittle failure in compression: Splitting, faulting and brittle-ductile transition. Phil Trans Royal Soc London A,1986, 319: 337-374??
[9]  12 Yu S W, Feng X Q. A micromechanics-based damage model for microcrack-weakened brittle solids. Mech Mater, 1995, 20: 59-76??
[10]  13 Feng X Q, Gross D. Micromechanical analysis of microcrack-induced residual strains in quasi-brittle solids. Comput Mater Sci, 1999, 16:362-371??
[11]  15 Kachanov M, Montague E, Laures J P. Mechanics of crack-microcrack interactions. Mech Mater, 1900, 10: 59-71
[12]  16 Laures J P, Kachanov M. Three-dimensional interaction of a crack front with arrays of peny shaped microcracks. Int J Fract, 1991, 48:255-279??
[13]  17 Chudnovsky A, Dolgopolsky A, Kachanov M. Elastic interaction of a crack with a microcrack array Part I and II. Int J Solids Struct, 1987,23: 1-21??
[14]  21 Ravichandran G, Subhash G. A micromecha-nical model for high strain rate behavior of ceramics. Int J Solids Struct, 1995, 32:2627-2646??
[15]  22 Wu Y Q, Huang F L. A thermal-mechanical constitutive model for b-MHX single crystal and cohesive interface under dynamic high pressure loading. Sci China-Phys Mech Astron, 2010, 53: 218-226??
[16]  24 Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial com-pression. Int J Rock Mech Mining Sci,1998, 35: 863-888??
[17]  25 Park C H, Bobet A. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng Fract Mech, 2010, 14:2727-2748
[18]  28 Wong R H C, Chau K T. Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Mining Sci, 1998, 35: 147-164??
[19]  29 Farmer I W. Engineering Behaviour of Rocks. 2nd ed. London: Chapman & Hall, 1983
[20]  1 Ren H L, Shu X F, Li P. Numerical and experimental investigation of the fracture behavior of shock loaded alumina. Sci China-Phys Mech Astron, 2010, 53: 244-252
[21]  4 Krajcinovic D, Fanella D. A micromechanical damage model for concrete. Eng Fract Mech, 1986, 25: 585-596??
[22]  8 Lee X, Ju J W. Micromechanical damage models for brittle solids II: Compressive loadings. J Eng Mech, 1991, 117: 1515-1536??
[23]  14 Kachanov M, Montague E. Interaction of a crack with certain microcrack arrays. Eng Fract Mech, 1986, 25: 625-636??
[24]  18 Chudnovsky A, Wu S. Evaluation of energy release rate in the crack-microcrack interaction problems. Int J Solids Struct, 1992, 29:1699-1709??
[25]  19 Gong S X, Horri H. General solutions to the problems of microcracks near the tip of a main crack. J Mech Phys Solids, 1989, 37: 27-46??
[26]  20 Meguid S A, Gong S X, Gaultier P E. Main crack-microcrack interaction under mode I, II and III loadings: Shielding and amplification. Int J Mech Sci, 1991, 33: 351-359??
[27]  23 Wang Z H, Zhang Y F, Ren H L, et al. A study on compressive shock wave propagation in metallic foams. Sci China-Phys Mech Astron,2010, 53: 279-287??
[28]  26 Wu K T, Hao L, Wang C, et al. Level interface treatment and its application in Euler method. Sci China-Phys Mech Astron, 2010, 53:227-236??
[29]  27 Yuan K H, Qiu Z P. Nonlinear flutter analysis of stiffened composite panels in supersonic flow. Sci China-Phys Mech Astron, 2010, 53:336-344??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133