全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

拉萨重力潮汐变化特征

, PP. 2094-2101

Keywords: 超导重力仪,青藏高原,拉萨,重力潮汐参数,近周日共振,负荷效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

重力潮汐变化是固体地球对日、月及近地行星等天体引潮力的响应,是地球内部结构和介质分布特征的综合反映,是其他全球和局部动力学过程研究的基础.本文采用拉萨台超导重力仪(SG)一年多连续观测资料,研究青藏高原地区重力潮汐变化特征.通过与LaCoste-RombergET20弹簧重力仪的对比观测,将拉萨的重力潮汐观测归算到武汉国际重力潮汐基准,精密确定了SG的格值为-777.358±0.136nms-2V-1,比其厂家提供的格值小2.2%.观测结果表明,拉萨台SG重力潮汐观测精度非常高,标准偏差为0.459nms-2,4个主要潮波的观测精度均优于0.006%,近周日共振特征表现得非常明显,可以作为区域重力潮汐基准,为青藏高原及其邻区重力观测提供参考.海潮负荷对拉萨重力潮汐观测的影响非常小,仅导致振幅因子不足0.6%的扰动;局部大气负荷效应没有明显的季节性特征,但对重力潮汐和非潮汐变化的观测和研究的影响非常显著,气压改正导致SG观测的标准偏差显著降低.经过海潮和局部气压负荷改正以后,拉萨台SG重力潮汐观测与理论模型之间仍然存在大约1%的差异,可能与青藏高原活跃的构造运动和区域巨厚的地壳有关,当然,要得到确切的结论还有待观测资料的长期积累和相关理论研究工作的进一步深入.

References

[1]  2 Cartwright D E, Tayler R J. New computations of the tide generating potential. Geophys J R Astr Soc, 1971, 23: 45-74
[2]  3 Xi Q W. The algebraic deduction of the harmonic development for the tide generating potential with the IBMPC. Proceedings of the 10th international symposium on the Earth tides, Madrid, 1985, 481-489
[3]  4 Tamura Y. A harmonic development of the tidal generating potential. Bull Inf Marées Terrestres, 1987, 99: 6813-6815
[4]  5 Hartmann T, Wenzel H G. The HW95 tidal generating potential catalogue. Geophys Res Lett, 1995, 22: 3553-3556??
[5]  8 Dehant V, Defraigne P, Wahr J. Tides for a convective Earth. J Geophys Res, 1999, 104: 1035-1058??
[6]  11 Melchior P. A new data bank for tidal gravity measurements (DB92). Phys Earth Planet Inter, 1994, 82: 125-155??
[7]  13 Ducarme B, Venedikov A, Arnosob J, et al. Determination of the long period tidal waves in the GGP superconducting gravity data. J Geo- dyn, 2004, 38: 307-324
[8]  18 Zerbini S, Richter B, Negusini M, et al. Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth Planet Sci Lett, 2001, 192: 267-279??
[9]  19 Richter B, Zerbini S, Matonti F, et al. Long-term crustal deformation monitored by gravity and space techniques at Medicina, Italy and Wettzell, Germany. J Geodyn, 2004, 38: 281-292??
[10]  20 徐建桥, 周江存, 罗少聪, 等. 武汉台重力长期变化特征研究. 科学通报, 2008, 53: 583-588
[11]  23 Vauterin P. Tsoft: Graphical & interactive software for the analysis of Earth tide data. In: Ducarme B, Paquet P, eds. Proceedings of the 13th International Symposium on the Earth Tides, Brussels, 1998. 481-486
[12]  24 Wenzel H G. The nanogal software: Data processing package ETERNA 3.3. Bull Inf Marées Terrestr, 1996, 124: 9425-9439
[13]  27 Agnew D. A program for computing ocean-tide loading. J Geophys Res, 1997, 102: 5109-5110??
[14]  28 Schwiderski E W. Ocean Tides I, Global ocean tidal equations. Marine Geod, 1980, 3: 161-217??
[15]  29 Egbert G, Bennett A, Foreman M. TOPEX/Poseidon tides estimated using a global inverse model. J Geophys Res, 1994, 99: 24821-24852??
[16]  30 Le Provost C, Genco M, Lyard F, et al. Spectroscopy of the ocean tides from a finite element hydrodynamic model. J Geophys Res, 1994, 99: 24777-24797??
[17]  32 Matsumoto K, Takanezawa T, Ooe M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J Oceanogr, 2000, 56: 567-581??
[18]  33 Lefèvre F, Lyard F, Le Provost C, et al. FES99: A global tide finite element solution assimilating tide gauge and altimetric information. J Atmos Oceanic Technol, 2002, 19: 1345-1356??
[19]  40 徐建桥, 孙和平, 周江存. 内核平动三重谱线的实验探测. 科学通报, 2009, 54: 3483-3490
[20]  1 Doodson A T. The harmonic development of the tide generating potential. Proc Roy Soc Lond Ser A, 1954, 31: 37-61
[21]  6 Roosbeek F A. A harmonic development of the tide generating potential. Geophys J Int, 1996, 126: 197-204??
[22]  7 Wahr J M. Body tides on an elliptical, rotating, elastic and oceanless earth. Geophys J R Astr Soc, 1981, 64: 677-703??
[23]  9 Mathews P M. Love numbers and gravimetric factor for diurnal tides. J Geod Soc Jpn, 2001, 46: 231-236
[24]  10 徐建桥, 孙和平. SNREI地球对表面负荷和引潮力的形变响应. 地球物理学报, 2003, 46: 328-343
[25]  12 Melchior P, Ducarme B, Francis O. The response of the Earth to tidal body forces described by second- and third-degree spherical harmonics as derived from a 12 year series of measurement with the superconducting gravimeter GWR/T3 in Brussels. Phys Earth Planet Inter, 1996, 93: 223-238??
[26]  14 Xu J Q, Sun H P, Ducarme B. A global experimental model for gravity tides of the Earth. J Geodyn, 2004, 38: 291-304
[27]  15 许厚泽. 青藏高原的大地测量研究. 武汉: 湖北科技出版社, 2001. 3-67
[28]  16 毛慧琴, 许厚泽, 宋兴黎, 等. 中国东西重力潮汐剖面. 地球物理学报, 1989, 32: 62-69
[29]  17 Hinderer J, Crossley D. Scientific achievements from the first phase (1997-2003) of the Global Geodynamics Project using a worldwide network of superconducting gravimeters. J Geodyn, 2004, 38: 237-262??
[30]  21 孙和平, 徐建桥, 黎琼. 地球重力场的精细频谱结构及其应用. 地球物理学进展, 2006, 21: 345-352
[31]  22 许厚泽, 孙和平, 徐建桥, 等. 武汉国际重力潮汐基准研究. 中国科学D辑: 地球科学, 2000, 30: 549-553
[32]  25 Farrell W E. Deformation of the Earth by surface loads. Rev Geophys Space Phys, 1972, 10: 761-797??
[33]  26 许厚泽, 毛伟建. 中国大陆的海洋负荷潮汐改正模型. 中国科学B辑, 1988, 9: 984-994
[34]  31 Andersen O B. Global ocean tides from ERS-1 and TOPEX/POSEIDON altimetry. J Geophys Res, 1995, 100: 25249-25259??
[35]  34 周江存, 徐建桥, 孙和平. 中国大陆精密重力潮汐改正模型. 地球物理学报, 2009, 52: 1474-1482
[36]  35 Merriam J B. Atmospheric pressure and gravity. Geophys J Int, 1992, 109: 488-500??
[37]  36 孙和平. 大气重力格林函数. 科学通报, 1997, 42: 1640-1646
[38]  37 Boy J P, Gegout P, Hinderer J. Reduction of surface gravity data from global atmospheric pressure loading. Geophys J Int, 2002, 149: 534-545??
[39]  38 罗少聪, 孙和平, 徐建桥. 大气变化对位移、重力和倾斜观测影响的理论计算. 地球物理学报, 2005, 48: 1288-1294
[40]  39 Kroner C, Jentzsch G. Comparison of different barometric pressure reductions for gravity data and resulting consequences. Phys Earth Planet Inter, 1999, 115: 205-218??
[41]  41 徐建桥, 孙和平, 罗少聪. 利用国际超导重力仪研究地球自由核章动. 中国科学D辑: 地球科学, 2001, 31: 719-726

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133