全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

光敏色素B介导光信号影响水稻的脱落酸途径

DOI: 10.1360/972011-2561, PP. 2371-2379

Keywords: 水稻,光敏色素,脱落酸,种子萌发

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究表明,拟南芥中光敏色素介导的光信号与植物激素脱落酸(abscisicacid,ABA)途径相互作用.但水稻光敏色素与ABA途径之间是否相互影响仍不清楚.利用野生型和phyB突变体水稻作为研究材料,分析phyB介导的光信号对ABA生物代谢和ABA反应的影响.结果表明,ABA合成代谢相关基因OsNCED1,OsNCED2,OsNCED3和OsNCED4在phyB突变体中的表达水平明显高于野生型,而ABA降解代谢基因OsABAOX1则相反,这可能解释了phyB突变体积累较多内源ABA的原因.外源ABA处理明显抑制黑暗和光照下生长的水稻种子的萌发,但光照条件下ABA对phyB突变体种子萌发的抑制效果更明显.据此推测,phyB感受的光信号消弱了ABA对种子萌发的抑制效果.通过分析部分已报道的种子萌发相关基因在正常或ABA处理的野生型和phyB突变体中的表达水平,结果表明,phyB介导的光信号对水稻种子萌发的调控作用可能与这些基因无关.此外,在红光条件下,ABA处理能够抑制水稻幼苗地上部分的生长,野生型和phyB突变体对ABA处理的反应基本相同;但是ABA对phyB突变体主根生长的抑制效果显著高于野生型,这个结果表明phyB介导的光信号不影响ABA对水稻幼苗地上部分生长的抑制效果,但负调控ABA对主根生长的抑制效果.上述研究结果表明,phyB介导的光信号负调控水稻ABA的积累和ABA反应.本研究揭示了水稻光敏色素对ABA途径的影响,为深入研究光信号途径和ABA途径之间协同调控水稻发育的分子机制奠定了基础.

References

[1]  3 Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281-311??
[2]  5 Gu J W, Liu J, Xue Y J, et al. Phytochrome functions in rice development. Rice Sci, 2011, 18: 231-237??
[3]  9 刘恒蔚, 周瑞阳, 徐俐. 光敏色素与光敏感雌性不育苎麻育性转换的关系. 作物学报, 2006, 32: 597-600
[4]  10 徐平珍, 刘涛, 杨莹, 等. 脱落酸在植物花发育过程中的作用. 云南植物研究, 2007, 29: 215-222
[5]  11 Takano M, Inagaki N, Xie X, et al. Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc Natl Acad Sci USA, 2009, 106: 14705-14710??
[6]  12 Zhong S W, Zhao M T, Shi T Y, et al. EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Acad Natl Sci USA, 2009, 106: 21431-21436??
[7]  14 赵晓玲. 植物中与光敏色素相互作用的因子PIFs. 植物生理学通讯, 2009, 45: 531-536
[8]  15 Oh E, Kang H, Yamaguchi S, et al. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell, 2009, 21: 403-419??
[9]  18 Sch?fer E, Bowler C. Phytochrome-mediated photoperception and signal transduction in higher plants. 2002, EMBO J, 3: 1042-1048
[10]  20 Dehesh K, Tepperman J, Christensen A H, et al. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol Gen Genet, 1991, 225: 305-313??
[11]  23 Xie X Z, Shinomura T, Inagaki N, et al. Phytochrome-mediated inhibition of coleoptile growth in rice: Age-dependency and action spectra. Photochem Photobiol, 2007, 83: 131-138??
[12]  25 Xie X Z, Xue Y J, Zhou J J, et al. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol Plant, 2011, 4: 688-696??
[13]  27 Kim S T, Sun Y K, Wang Y M, et al. Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics, 2008, 8: 3577-3587??
[14]  28 Yang P F, Li X J, Wang X Q, et al. Proteomics analysis of rice (Oryza sativa) seeds during germination. Proteomics, 2007, 7: 3358-3368??
[15]  31 Seo M, Hanada A, Kuwahara A, et al. Regulation of hormone metabolism in Arabidopsis seeds: Phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J, 2006, 48: 354-366??
[16]  1 Suetsugu N, Wada M. Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem, 2007, 388: 927-935??
[17]  2 Franklin K A, Quail P H. Phytochrome functions in Arabidopsis development. J Exp Bot, 2010, 61: 11-24??
[18]  4 周波, 李玉花. 植物的光敏色素与光信号转导. 植物生理学通讯, 2006, 42: 134-140
[19]  6 Nagatani A. Light-regulated nuclear localization of phytochromes. Curr Opin Plant Biol, 2004, 7: 1-4??
[20]  7 王静, 王艇. 高等植物光敏色素的分子结构、生理功能和进化特征. 植物学通报, 2007, 24: 649-658
[21]  8 Takano M, Inagaki N, Xie X Z, et al. Distinct and cooperative functions of phytochromes A, B and C in the control of deetiolation and flowering in rice. Plant Cell, 2005, 17: 3311-3325??
[22]  13 Lorrain S, Allen T, Duek P D, et al. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J, 2008, 53: 312-323
[23]  16 Kim D H, Yamaguchi S, Lim S, et al. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell, 2008, 20: 1260-1277
[24]  17 Chattopadhyay S, Ang L H, Puente P, et al. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell, 1998, 10: 673-683
[25]  19 Chen H, Zhang J, Neff M M, et al. Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci USA, 2008, 105: 44954-45000
[26]  21 Kay S A, Keith B, Shinozaki K, et al. The sequence of the rice phytochrome gene. Nucleic Acids Res, 1989, 17: 2865-2866??
[27]  22 Basu D, Dehesh K, Schneider-Poetsch H J, et al. Rice PHYC gene: Structure, expression, map position and evolution. Plant Mol Biol, 2000, 44: 27-42??
[28]  24 刘婧, 柳艳梅, Takano M, 等. 光敏色素影响赤霉素调控的水稻幼苗光形态建成特征. 科学通报, 2010, 55: 2384-2390
[29]  26 Takano M, Kanegae H, Shinomura T, et al. Isolation and characterization of rice phytochrome A mutants. Plant Cell, 2001, 13: 521-534
[30]  29 Bailly C. Active oxygen species and antioxidants in seed biology. Seed Sci Res, 2004, 14: 93-107??
[31]  30 Liu J, Zhang F, Zhou J, et al. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol, 2012, 78: 289-300??
[32]  32 Cho J N, Ryu J Y, Jeong Y M, et al. Control of seed germination by light-induced histone arginine demethylation activity. Dev Cell, 2012, 22: 736-748??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133