全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

铣削过程稳定性分析的时域法研究进展

, PP. 2922-2932

Keywords: 铣削动力学,稳定性分析,半解析法

Full-Text   Cite this paper   Add to My Lib

Abstract:

高速铣削是高性能加工的重要支撑技术,获取无颤振铣削工艺参数是保证铣削加工精度、提高加工效率的前提.再生颤振是引起铣削过程失稳的主要因素,考虑再生效应的动态铣削过程可以表述为含周期系数矩阵的时滞微分方程组.本文从时滞动力系统的动态响应数值求解的角度,对基于动力学模型的铣削颤振稳定性时域(半)解析方法以及应用进行了综述,着重介绍了基于积分方程的半解析方法,并展望了铣削过程稳定性分析的发展趋势.

References

[1]  1 Zhu L M, Ding H, Xiong Y L. Third-order point contact approach for five-axis sculptured surface machining using non-ball-end tools (I): Third-order approximation of tool envelope surface. Sci China Technol Sci, 2010, 53: 1904-1912??
[2]  2 Zhu L M, Ding H, Xiong Y L. Third-order point contact approach for five-axis sculptured surface machining using non-ball-end tools (Ⅱ): Tool positioning strategy. Sci China Technol Sci, 2010, 53: 2190-2197??
[3]  3 Ye T, Xiong C H, Xiong Y L, et al. Kinematics constrained five-axis tool path planning for high material removal rate. Sci China Technol Sci, 2011, 54: 3155-3165??
[4]  5 Bi Q Z, Wang Y H, Zhu L M, et al. Wholly smoothing cutter orientations for five-axis NC machining based on cutter contact point mesh. Sci China Technol Sci, 2010, 53: 1294-1303??
[5]  8 Wiercigroch M, Krivtsov A M. Frictional chatter in orthogonal metal cutting. Phil Trans R Soc A, 2001, 359: 713-738??
[6]  9 Davies M A, Burns T J. Thermomechanical oscillations in material flow during high-speed machining. Phil Trans R Soc A, 2001, 359: 821-846 ??
[7]  17 Schmitz T L. Predicting high-speed machining dynamics by substructure analysis. CIRP Ann-Manuf Techn, 2000, 49: 303-308??
[8]  18 Schmitz T L, Davies M A, Kennedy M D. Tool point frequency response prediction for high-speed machining by RCSA. J Manuf Sci E-T ASME, 2001, 123: 700-707??
[9]  19 Zhu R X, Kapoor S G, Devor R E. Mechanistic modeling of the ball end milling process for multi-axis machining of free-form surfaces. J Manuf Sci E-T ASME, 2001, 123: 369-379??
[10]  20 Budak E, Altintas Y, Armarego E J A. Prediction of milling force coefficients from orthogonal cutting data. J Manuf Sci E-T ASME, 1996, 118: 216-224??
[11]  26 Sridhar R, Hohn R E, Long G W. A stability algorithm for the general milling process. J Eng Ind-T ASME, 1968, 90: 330-334??
[12]  27 Tlusty J, Ismail F. Basic non-linearity in machining chatter. CIRP Ann-Manuf Techn, 1981, 30: 299-304??
[13]  29 Smith S, Tlusty J. Efficient simulation programs for chatter in milling. CIRP Ann-Manuf Techn, 1993, 42: 463-466??
[14]  31 Davies M A, Pratt J R, Dutterer B, et al. Stability prediction for low radial immersion milling. J Manuf Sci E-T ASME, 2002, 124: 217-225??
[15]  32 Campomanes M L, Altintas Y. An improved time domain simulation for dynamic milling at small radial immersions. J Manuf Sci E-T ASME, 2003, 125: 416-422??
[16]  33 Li Z Q, Liu Q. Solution and analysis of chatter stability for end milling in the time-domain. Chin J Aeronaut, 2008, 21: 169-178??
[17]  34 Minis I, Yanushevsky R. A new theoretical approach for the prediction of machine tool chatter in milling. J Eng Ind-T ASME, 1993, 115: 1-8??
[18]  35 Altintas Y, Budak E. Analytical prediction of stability lobes in milling. CIRP Ann-Manuf Techn, 1995, 44: 357-362??
[19]  36 Budak E, Altintas Y. Analytical prediction of chatter stability in milling—Part I: General formulation. J Dyn Syst-T ASME, 1998, 120: 22-30??
[20]  39 Mann B P, Patel B R. Stability of delay equations written as state space models. J Vib Control, 2010, 16: 1067-1085??
[21]  40 Garg N K, Mann B P, Kim N H, et al. Stability of a time-delayed system with parametric excitation. J Dyn Syst-T ASME, 2007, 129: 125-135??
[22]  41 Insperger T, Stépán G. Semi-discretization method for delayed systems. Int J Number Meth Eng, 2002, 55: 503-518??
[23]  48 宋清华, 艾兴, 万熠, 等. 小径向切深下进给量对铣削稳定性的影响. 中国机械工程, 2008, 19: 1148-1152
[24]  51 Olgac N, Sipahi R. Dynamics and stability of variable-pitch milling. J Vib Control, 2007, 13: 1031-1043??
[25]  53 Yi S, Nelson P W, Ulsoy A G. Delay differential equations via the matrix Lambert W function and bifurcation analysis: Application to machine tool chatter. Math Biosci Eng, 2007, 4: 355-368??
[26]  54 Butcher E A, Ma H, Bueler E, et al. Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. Int J Number Meth Eng, 2004, 59: 895-922??
[27]  55 Butcher E A, Bobrenkov O A, Bueler E, et al. Analysis of milling stability by the Chebyshev collocation method: Algorithm and optimal stable immersion levels. J Comput Nonlin Dyn, 2009, 4: 031003??
[28]  56 Schmitz T L, Mann B P. Closed-form solutions for surface location error in milling. Int J Mach Tool Manu, 2006, 46: 1369-1377??
[29]  60 Bayly P V, Mann B P, Schmitz T L, et al. Effects of radial immersion and cutting direction on chatter instability in end-milling. ASME, Manuf Eng Div, MED, 2002, 13: 351-363
[30]  62 Ding Y, Zhu L M, Zhang X J, et al. Numerical integration method for prediction of milling stability. J Manuf Sci E-T ASME, 2011, 133: 031005??
[31]  63 Bayly P V, Halley J E, Mann B P, et al. Stability of interrupted cutting by temporal finite element analysis. J Manuf Sci E-T ASME, 2003, 125: 220-225??
[32]  64 Ding Y, Zhu L M, Zhang X J, et al. Second-order full-discretization method for milling stability prediction. Int J Mach Tool Manu, 2010, 50: 926-932??
[33]  65 Zhang X J, Xiong C H, Ding Y. Improved full-discretization method for milling chatter stability prediction with multiple delays. Lect Notes Comput Sc, 2010, 6425: 541-552??
[34]  66 Delves L M, Mohamed J L. Computational Methods for Integral Equations. Cambridge: Cambridge University Press, 1985
[35]  69 Zhang X J, Xiong C H, Ding Y, et al. Variable-step integration method for milling chatter stability prediction with multiple delays. Sci China Technol Sci, 2011, 54: 3137-3154??
[36]  71 Ding Y, Zhu L M, Zhang X J, et al. Response sensitivity analysis of the dynamic milling process based on the numerical integration method. Chin J Mech Eng, 2012, 25: 940-946??
[37]  72 Kurdi M H, Haftka R T, Schmitz T L, et al. A robust semi-analytical method for calculating the response sensitivity of a time delay system. J Vib Acoust-T ASME, 2008, 130: 064504??
[38]  4 Guo Q, Sun Y W, Guo D M. Analytical modeling of geometric errors induced by cutter runout and tool path optimization for five-axis flank machining. Sci China Technol Sci, 2011, 54: 3180-3190??
[39]  6 Wiercigroch M, Budak E. Sources of nonlinearities, chatter generation and suppression in metal cutting. Phil Trans R Soc A, 2001, 359: 663-693??
[40]  7 Ismail F, Vadari V R. Machining chatter of end mills with unequal modes. J Eng Ind-T ASME, 1990, 112: 229-235??
[41]  10 Altintas Y, Weck M. Chatter stability of metal cutting and grinding. CIRP Ann-Manuf Techn, 2004, 53: 619-642??
[42]  11 Altintas Y, Stépán G, Merdol D, et al. Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Techn, 2008, 1: 35-44??
[43]  12 Schmitz T, Ziegert J. Examination of surface location error due to phasing of cutter vibrations. Precis Eng, 1999, 23: 51-62??
[44]  13 Bachrathy D, Insperger T, Stepan G. Surface properties of the machined workpiece for helical mills. Mach Sci Technol, 2009, 13: 227-245??
[45]  14 Altintas Y. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC design. Cambridge: Cambridge University Press, 2000
[46]  15 Gradisek J, Kalveram M, Insperger T, et al. On stability prediction for milling. Int J Mach Tool Manu, 2005, 45: 769-781??
[47]  16 Mann B P, Young K A, Schmitz T L, et al. Simultaneous stability and surface location error predictions in milling. J Manuf Sci E-T ASME, 2005, 127: 446-453??
[48]  21 Budak E, Ozturk E, Tunc L T. Modeling and simulation of 5-axis milling processes. CIRP Ann-Manuf Techn, 2009, 58: 347-350??
[49]  22 Zhang X J, Xiong C H, Ding Y. A new solution for stability prediction in flexible part milling. Lect Notes Comput Sci, 2011, 7102: 452-464??
[50]  23 Zhang X J, Xiong C H, Ding Y, et al. Milling stability analysis with simultaneously considering the structural mode coupling effect and regenerative effect. Int J Mach Tool Manu, 2011, 53: 127-140
[51]  24 Mao X Y, Liu H Q, Li B. Time-frequency analysis and detecting method research on milling force token signal in spindle current signal. Sci China Ser E-Technol Sci, 2009, 52: 2810-2813??
[52]  25 Liu H Q, Chen Q H, Li B, et al. On-line chatter detection using servo motor current signal in turning. Sci China Technol Sci, 2011, 54: 3119-3129??
[53]  28 Tlusty J, Ismail F. Special aspects of chatter in milling. J Vib Acoust Stress Reliab Des-T ASME, 1983, 105: 24-32
[54]  30 Davies M A, Pratt J R, Dutterer B S, et al. Stability of low radial immersion milling. CIRP Ann-Manuf Techn, 2000, 49: 37-40??
[55]  37 Merdol S D, Altintas Y. Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci E-T ASME, 2004, 126: 459-466??
[56]  38 Bayly P V, Halley J E, Mann B P, et al. Stability of interrupted cutting by temporal finite element analysis. Pro ASME Des Eng Tech Conf, 2001, 6C: 2361-2370
[57]  42 Insperger T, Stépán G. Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Number Meth Eng, 2004, 61: 117-141??
[58]  43 Insperger T, Stépán G, Turi J. On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib, 2008, 313: 334-341??
[59]  44 Long X H, Balachandran B, Mann B P. Dynamics of milling processes with variable time delays. Nonlinear Dynam, 2007, 47: 49-63
[60]  45 Long X H, Balachandran B. Stability of up-milling and down-milling operations with variable spindle speed. J Vib Control, 2010, 16: 1151-1168??
[61]  46 李中伟, 龙新华, 孟光. 基于Magnus-Gaussian截断的铣削系统稳定性的半离散分析法. 振动与冲击, 2009, 28: 69-73
[62]  47 宋清华, 艾兴, 万熠, 等. 考虑刀具偏心的变径向切深铣削稳定性研究. 振动、测试与诊断, 2008, 28: 206-210
[63]  49 Wan M, Zhang W H, Dang J W, et al. A unified stability prediction method for milling process with multiple delays. Int J Mach Tool Manu, 2010, 50: 29-41??
[64]  50 Olgac N, Hosek M. A new perspective and analysis for regenerative machine tool chatter. Int J Mach Tool Manu, 1998, 38: 783-798??
[65]  52 Maghami Asl F, Ulsoy A G. Analysis of a system of linear delay differential equations. J Dyn Syst-T ASME, 2003, 125: 215-223??
[66]  57 Mann B P, Bartow M J, Young K A, et al. Machining accuracy due to tool or workpiece vibrations. ASME, Manuf Eng Div, MED, 2003, 14: 55-62
[67]  58 Mann B P, Edes B T, Easley S J, et al. Chatter vibration and surface location error prediction for helical end mills. Int J Mach Tool Manu, 2008, 48: 350-361??
[68]  59 Insperger T, Gradisek J, Kalveram M, et al. Machine tool chatter and surface location error in milling processes. J Manuf Sci E-T ASME, 2006, 128: 913-920??
[69]  61 Ding Y, Zhu L M, Zhang X J, et al. A full-discretization method for prediction of milling stability. Int J Mach Tool Manu, 2010, 50: 502-509??
[70]  67 Yang W Y, Cao W, Chung T-S, et al. Applied Numerical Methods Using Matlab. Hoboken N. J.: Wiley-Interscience, 2005
[71]  68 Ding Y, Zhu L M, Zhang X J, et al. Milling stability analysis using the spectral method. Sci China Technol Sci, 2011, 54: 3130-3136??
[72]  70 Ding Y, Zhu L M, Zhang X J, et al. On a numerical method for simultaneous prediction of stability and surface location error in low radial immersion milling. J Dyn Syst-T ASME, 2011, 133: 024503??
[73]  73 Lax P D. Linear Algebra and Its Applications. New York: Wiley-Interscience, 2007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133