全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

自身运动中眼动补偿的神经机制

DOI: 10.1360/972012-711, PP. 3346-3357

Keywords: 自身运动,内上颞区,顶内沟腹侧,眼动追踪,猕猴

Full-Text   Cite this paper   Add to My Lib

Abstract:

自身运动特指观察主体在外界环境中的运动状态,而判断自身运动方向的主要依据来自于视觉系统的光流信息输入.对这种信息的处理是由位于背侧通路的一系列脑区来完成的.由于自身运动过程中常常伴随着眼动和其他躯体运动,它们会严重扭曲来自于视网膜的图像,为自身运动认知造成困难.心理物理研究表明,眼动追踪等因素并未显著改变观察者的自身运动认知精度,预示神经系统必然存在一种补偿机制来矫正眼动和其他躯体运动带来的影响,这种补偿作用的具体神经机制尚未明晰.目前普遍认为,与自身运动认知行为关系最紧密的脑区是内上颞区和顶内沟腹侧.本文通过综述对这两个脑区的最新研究进展,对自身运动中眼动补偿的可能神经机制进行探讨,期望对进一步的实验研究有所助益.

References

[1]  1 Gibson J J. The Perception of the Visual World. Cambridge: Riverside Press, 1950
[2]  4 Tanaka K, Hikosaka K, Saito H, et al. Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci, 1986, 6: 134-144
[3]  5 Tanaka K, Fukada Y, Saito H. Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol, 1989, 62: 642-656
[4]  6 Duffy C J, Wurtz R H. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol, 1991, 65: 1329-1345
[5]  8 Schaafsma S, Duysens J, Gielen C. Responses in ventral intraparietal area of awake macaque monkey to optic flow patterns corresponding to rotation of planes in depth can be explained by translation and expansion effects. Visual Neurosci, 1997, 14: 633-646??
[6]  10 Gu Y, Watkins P V, Angelaki D E, et al. Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area. J Neurosci, 2006, 26: 73??
[7]  11 Bremmer F. Multisensory space: From eye-movements to self-motion. J Physiol, 2011, 589: 815-823??
[8]  12 Zhang T, Heuer H W, Britten K H. Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron, 2004, 42: 993-1001??
[9]  13 Bremmer F, Kubischik M, Pekel M, et al. Linear vestibular self-motion signals in monkey medial superior temporal area. Ann Ny Acad Sci, 1999, 871: 272-281??
[10]  14 Cook E P, Maunsell J H R. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J Neurosci, 2002, 22: 1994-2004
[11]  15 Cook E P, Maunsell J H R. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat Neurosci, 2002, 5: 985-994??
[12]  18 Komatsu H, Wurtz R H. Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. J Neurophysiol, 1988, 60: 621-644
[13]  19 Zhang T, Britten K H. The responses of VIP neurons are sufficiently sensitive to support heading judgments. J Neurophysiol, 2010, 103: 1865??
[14]  20 Tanaka K, Sugita Y, Moriya M, et al. Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. J Neurophysiol, 1993, 69: 128-142
[15]  23 Graziano M, Andersen R A, Snowden R J. Tuning of MST neurons to spiral motions. J Neurosci, 1994, 14: 54-67
[16]  25 Celebrini S, Newsome W T. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J Neurosci, 1994, 14: 4109-4124
[17]  28 Page W K, Duffy C J. MST neuronal responses to heading direction during pursuit eye movements. J Neurophysiol, 1999, 81: 596
[18]  29 Britten K H, van Wezel R JA. Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci, 1998, 1: 59-63??
[19]  31 Froehler M T, Duffy C J. Cortical neurons encoding path and place: Where you go is where you are. Science, 2002, 295: 2462??
[20]  32 Gu Y, Angelaki D E, DeAngelis G C. Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci, 2008, 11: 1201-1210??
[21]  36 Dursteler M, Wurtz R H, Newsome W T. Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. J Neurophysiol, 1987, 57: 1262-1287
[22]  37 Takemura A, Murata Y, Kawano K, et al. Deficits in short-latency tracking eye movements after chemical lesions in monkey cortical areas MT and MST. J Neurosci, 2007, 27: 529-541??
[23]  38 Bradley D C, Maxwell M, Andersen R A, et al. Mechanisms of heading perception in primate visual cortex. Science, 1996, 273: 1544??
[24]  41 Duhamel J R, Colby C L, Goldberg M E. Congruent representations of visual and somatosensory space in single neurons of monkey ventral intra-parietal cortex (area VIP). In: Paillard J, ed. Brain and Space. Oxford: Oxford University Press, 1991
[25]  43 Duhamel J R, Colby C L, Goldberg M E. Ventral intraparietal area of the macaque: Congruent visual and somatic response properties. J Neurophysiol, 1998, 79: 126
[26]  45 Schlack A, Hoffmann K P, Bremmer F. Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements. J Physio, 2003, 551: 551-561??
[27]  46 Schlack A, Sterbing-D’Angelo S J, Hartung K, et al. Multisensory space representations in the macaque ventral intraparietal area. J Neurosci, 2005, 25: 4616-4625??
[28]  48 Zhang T, Britten K H. Parietal area VIP causally influences heading perception during pursuit eye movements. J Neurosci, 2011, 31: 2569??
[29]  49 Squire L R. Fundamental Neuroscience. 3rd ed. New York: Associated Press, 2008
[30]  50 Britten K H. Mechanisms of self-motion perception. Annu Rev Neurosci, 2008, 31: 389-410??
[31]  51 Turano K A, Heidenreich S M. Eye movements affect the perceived speed of visual motion. Vision Res, 1999, 39: 1177-1187??
[32]  52 Andersen R, Bradley D, Shenoy K. Neural Mechanisms for Heading and Structure-from-Motion Perception. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1996
[33]  53 Shenoy K V, Crowell J A, Andersen R A. Pursuit speed compensation in cortical area MSTd. J Neurophysiol, 2002, 88: 2630??
[34]  54 Churchland A K, Lisberger S G. Relationship between extraretinal component of firing rate and eye speed in area MST of macaque monkeys. J Neurophysiol, 2005, 94: 2416??
[35]  56 Sonuga-Barke E J S, Wiersema J R, van der Meere J J, et al. Context-dependent dynamic processes in attention deficit/hyperactivity disorder: Differentiating common and unique effects of state regulation deficits and delay aversion. Neuropsychol Rev, 2010, 20: 86-102??
[36]  57 Bremmer F. Navigation in space—the role of the macaque ventral intraparietal area. J Physiol, 2005, 566: 29??
[37]  59 Perrone J A, Stone L S. Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation. J Neurosci, 1998, 18: 5958-5975
[38]  61 Royden C S. Mathematical analysis of motion-opponent mechanisms used in the determination of heading and depth. Josa A, 1997, 14: 2128-2143??
[39]  63 Hanada M. An algorithmic model of heading perception. Biol Cybern, 2005, 92: 8-20??
[40]  64 Lappe M, Bremmer F, Pekel M, et al. Optic flow processing in monkey STS: A theoretical and experimental approach. J Neurosci, 1996, 16: 6265-6285
[41]  65 van den Berg A V, Beintema J A. Motion templates with eye velocity gain fields for transformation of retinal to head centric flow. Neuroreport, 1997, 8: 835 ??
[42]  66 Wurtz R H, Sommer M A, Cavanaugh J. Drivers from the deep: The contribution of collicular input to thalamocortical processing. Prog Brain Res, 2005, 149: 207-225??
[43]  67 von Helmholtz H. Helmholtz’s Treatise on Physiological Optics. Vol. 3. New York: Optical Society of America, 1962
[44]  70 Wang X, Zhang M, Cohen I S, et al. The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat Neurosci, 2007, 10: 640-646??
[45]  72 Campos M, Cherian A, Segraves M A. Effects of eye position upon activity of neurons in macaque superior colliculus. J Neurophysiol, 2006, 95: 505-526
[46]  74 Longuet-Higgins H C, Prazdny K. The interpretation of a moving retinal image. Proc Roy Soc Lond Ser B Biol Sci, 1980, 208: 385??
[47]  75 Koenderink J, Doorn A J. Facts on optic flow. Biol Cybern, 1987, 56: 247-254??
[48]  76 Grigo A, Lappe M. Dynamical use of different sources of information in heading judgments from retinal flow. Josa A, 1999, 16: 2079-2091??
[49]  77 Andersen R, Snowden R, Treue S, et al. Hierarchical Processing of Motion in the Visual Cortex of Monkey. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1990
[50]  78 von Holst E, Mittelstaedt H. The principle of reafference: Interactions between the central nervous system and the peripheral organs. In: Dodwell P C, ed. Perceptual Processing: Stimulus Equivalence and Pattern Recognition. New York: Century-Crofts Meredith Corporation, 1971
[51]  79 Wertheim A H. Motion perception during self-motion: The direct versus inferential controversy revisited. Behav Brain Sci, 1994, 17: 293-310??
[52]  80 Turano K A, Massof R W. Nonlinear contribution of eye velocity to motion perception. Vision Res, 2001, 41: 385-395??
[53]  86 Warren W H, Hannon D J. Direction of self-motion is perceived from optical flow. Nature, 1988, 336: 162-163??
[54]  87 Lagae L, Raiguel S, Orban G. Speed and direction selectivity of macaque middle temporal neurons. J Neurophysiol, 1993, 69: 19-39
[55]  88 Maunsell J H, Van Essen D C. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol, 1983, 49: 1127-1147
[56]  89 Perrone J A, Thiele A. Speed skills: Measuring the visual speed analyzing properties of primate M T neurons. Nat Neurosci, 2001, 4: 526-532
[57]  90 Priebe N J, Cassanello C R, Lisberger S G. The neural representation of speed in macaque area MT/V5. J Neurosci, 2003, 23: 5650-5661
[58]  2 Bremmer F, Duhamel J R, Ben Hamed S, et al. Heading encoding in the macaque ventral intraparietal area (VIP). Eur J Neurosci, 2002, 16: 1554-1568??
[59]  3 Bremmer F, Klam F, Duhamel J R, et al. Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur J Neurosci, 2002, 16: 1569-1586??
[60]  7 Schaafsma S, Duysens J. Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. J Neurophysiol, 1996, 76: 4056-4068
[61]  9 Anderson K C, Siegel R M. Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. J Neurosci, 1999, 19: 2681
[62]  16 Banks M S, Ehrlich S M, Backus B T, et al. Estimating heading during real and simulated eye movements. Vision Res,1996, 36: 431-443??
[63]  17 Komatsu H, Wurtz R H. Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J Neurophysiol, 1988, 60: 580-603
[64]  21 Saito H, Yukie M, Tanaka K, et al. Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci, 1986, 6: 145-157
[65]  22 Lagae L, Maes H, Raiguel S, et al. Responses of macaque STS neurons to optic flow components: A comparison of areas MT and MST. J Neurophysiol, 1994, 71: 1597-1626
[66]  24 Duffy C J. MST neurons respond to optic flow and translational movement. J Neurophysiol, 1998, 80: 1816-1827
[67]  26 Heuer H W, Britten K H. Optic flow signals in extrastriate area MST: Comparison of perceptual and neuronal sensitivity. J Neurophysiol, 2004, 91: 1314-1326
[68]  27 Britten K H, Newsome W T, Shadlen M N, et al. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Visual Neurosci, 1996, 13: 87-100??
[69]  30 Britten K H, van Wezel R J A. Area MST and heading perception in macaque monkeys. Cereb Cortex, 2002, 12: 692??
[70]  33 Bremmer F, Ilg U, Thiele A, et al. Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. J Neurophysiol, 1997, 77: 944-961
[71]  34 Squatrito S, Maioli M. Gaze field properties of eye position neurones in areas MST and 7a of the macaque monkey. Visual Neurosci, 1996, 13: 385-398??
[72]  35 Squatrito S, Maioli M G. Encoding of smooth pursuit direction and eye position by neurons of area MSTd of macaque monkey. J Neurosci, 1997, 17: 3847-3860
[73]  39 Shenoy K V, Bradley D C, Andersen R A. Influence of gaze rotation on the visual response of primate MSTd neurons. J Neurophysiol, 1999, 81: 2764
[74]  40 Maunsell J, van Essen D C. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci, 1983, 3: 2563-2586
[75]  42 Colby C L, Duhamel J R, Goldberg M E. Ventral intraparietal area of the macaque: Anatomic location and visual response properties. J Neurophysiol, 1993, 69: 902-914
[76]  44 Schlack A, Hoffmann K P, Bremmer F. Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP). Eur J Neurosci, 2002, 16: 1877-1886??
[77]  47 Maciokas J B, Britten K H. Extrastriate area MST and parietal area VIP similarly represent forward headings. J Neurophysiol, 2010, 104: 239-247??
[78]  55 Poljac E, Lankheet M, van den Berg A. Perceptual compensation for eye torsion. Vision Res, 2005, 45: 485-496??
[79]  58 Warren Jr W H, Hannon D J. Eye movements and optical flow. Josa A, 1990, 7: 160-169??
[80]  60 Perrone J A, Stone L S. A model of self-motion estimation within primate extrastriate visual cortex. Vision Res, 1994, 34: 2917-2938??
[81]  62 Ben Hamed S, Page W, Duffy C, et al. MSTd neuronal basis functions for the population encoding of heading direction. J Neurophysiol, 2003, 90: 549-558??
[82]  68 Zhang M, Wang X, Goldberg M E. Monkey primary somatosensory cortex has a proprioceptive representation of eye position. Prog Brain Res, 2008, 171: 37-45??
[83]  69 Lee B, Pesaran B, Andersen R A. Translation speed compensation in the dorsal aspect of the medial superior temporal area. J Neurosci, 2007, 27: 2582-2591??
[84]  71 Guthrie B L, Porter J D, Sparks D L. Corollary discharge provides accurate eye position information to the oculomotor system. Science, 1983, 221: 1193-1195??
[85]  73 Holst E, Mittelstaedt H. Das Reafferenzprinzip. Naturwissenschaften,1950, 37: 464-476??
[86]  81 Nakayama K, Loomis J. Optical velocity patterns, velocity-sensitive neurons, and space perception: A hypothesis. Perception, 1974, 3: 63-80??
[87]  82 Sperry R. Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol, 1950, 43: 482??
[88]  83 Perrone J A, Krauzlis R J. Vector subtraction using visual and extraretinal motion signals: A new look at efference copy and corollary discharge theories. J Vision, 2008, 8: 1-14
[89]  84 Freeman T C A, Banks M S, Crowell J A. Extraretinal and retinal amplitude and phase errors during Filehne illusion and path perception. Percept Psychophys, 2000, 62: 900-909??
[90]  85 Li L, WarrenJr W H. Perception of heading during rotation: Sufficiency of dense motion parallax and reference objects. Vision Res, 2000, 40: 3873-3894??
[91]  91 Erickson R, Thier P. A neuronal correlate of spatial stability during periods of self-induced visual motion. Exp Brain Res, 1991, 86: 608-616
[92]  92 Newsome W T, Wurtz R H, Komatsu H. Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. J Neurophysiol, 1988, 60: 604-620

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133