全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

超临界二氧化碳流体技术制备多孔微球研究进展

DOI: 10.1360/972012-1105, PP. 3459-3466

Keywords: 多孔微球,药物载体,超临界二氧化碳流体,干燥剂,致孔剂,抗溶剂

Full-Text   Cite this paper   Add to My Lib

Abstract:

多孔微球凭借其特殊结构,在药物载体领域已成为一种性能突出的给药新剂型.传统方法如喷雾干燥和乳化-溶剂挥发法,制备多孔微球在理论上和技术上均已较成熟,且成球成孔效果较好,但是制备过程中仍存在着条件不易控制或有机溶剂难以有效去除等问题.近年来,超临界二氧化碳流体技术利用二氧化碳流体优越的流体性能及环境友好特性,已被广泛用于制备各种实心微球及载药微球.通过不断研究与总结,超临界二氧化碳流体可以用作干燥剂、携带剂、致孔剂及抗溶剂等,发挥多种作用,并且在制备多孔微球领域也展示出巨大的发展前景.本文将国内外采用该技术制备多孔微球的研究进展及存在问题作一综述,同时对多孔微球超临界流体制备技术的发展方向提出观点.

References

[1]  1 Zhang Y, Zhi Z, Jiang T, et al. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release, 2010, 145: 257-263??
[2]  6 陈蓓怡, 于文利, 赵亚平. 超临界流体技术在介孔材料制备中的应用. 化工进展, 2005, 24: 498-501
[3]  8 Kim H, Park H, Lee J, et al. Highly porous large poly(lactic-co-glycolic acid) microspheres adsorbed with palmityl-acylated exendin-4 as a long-acting inhalation system for treating diabetes. Biomaterials, 2011, 32: 1685-1693 ??
[4]  9 Ungaro F, d’Emmanuele di Villa Bianca R, Giovino C, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: In vivo deposition and hypoglycaemic activity after delivery to rat lungs. J Control Release, 2009, 135: 25-34 ??
[5]  10 Lee J, Oh Y J, Lee S K, et al. Facile control of porous structures of polymer microspheres using an osmotic agent for pulmonary delivery. J Control Release, 2010, 146: 61-67 ??
[6]  13 Chen A Z, Li L, Wang S B, et al. Study of Fe3O4-PLLA-PEG-PLLA magnetic microspheres based on supercritical CO2: Preparation, physicochemical characterization, and drug loading investigation. J Supercrit Fluids, 2012, 67: 139-148 ??
[7]  14 Chen A Z, Lin X F, Wang S B, et al. Biological evaluation of Fe3O4-poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) magnetic microspheres prepared in supercritical CO2. Toxicol Lett, 2012, 212: 75-82 ??
[8]  16 Alnaief M, Smirnova I. In situ production of spherical aerogel microparticles. J Supercrit Fluids, 2011, 55: 1118-1123 ??
[9]  17 Chatterjee M, Chatterjee A, Ikushima Y, et al. Preparation of silica sphere with porous structure in supercritical carbon dioxide. J Colloid Interface Sci, 2010, 348: 57-64 ??
[10]  23 Alnaief M, Smirnova I. Effect of surface functionalization of silica aerogel on their adsorptive and release properties. J Non-Cryst Solids, 2010, 356: 1644-1649??
[11]  24 García-González C A, Alnaief M, Smirnova I. Polysaccharide-based aerogels-promising biodegradable carriers for drug delivery systems. Carbohydr Polym, 2011, 86: 1425-1438??
[12]  26 Alnaief M, Alzaitoun M A, García-González C A, et al. Preparation of biodegradable nanoporous microspherical aerogel based on alginate. Carbohydr Polym, 2011, 84: 1011-1018??
[13]  27 Brown Z K, Fryer P J, Norton I T, et al. Drying of agar gels using supercritical carbon dioxide. J Supercrit Fluids, 2010, 54: 89-95??
[14]  28 García-González C A, Uy J J, Alnaief M, et al. Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr Polym, 2012, 88: 1378-1386??
[15]  30 Wood C D, Cooper A I. Synthesis of macroporous polymer beads by suspension polymerization using supercritical carbon dioxide as a pressure-adjustable porogen. Macromolecules, 2001, 34: 5-8??
[16]  31 Kamrupi I R, Pokhrel B, Kalita A, et al. Synthesis of macroporous polymer particles by suspension polymerization using supercritical carbon dioxide as a pressure-adjustable porogen. Adv Polym Technol, 2012, 31: 154-162??
[17]  33 Wang C M, Zhang X Q, Zhao Y, et al. Microspheres prepared from ultrahigh molecular weight polyethylene in supercritical CO2 fluid. Chem J Chin U, 2010; 31: 1252-1256
[18]  41 Youn Y S, Oh J H, Ahn K H, et al. Dissolution rate improvement of valsartan by low temperature recrystallization in compressed CO2: Prevention of excessive agglomeration. J Supercrit Fluids, 2011, 59: 117-123??
[19]  43 Liu J, Shen Z H, Lee S H, et al. Electrospinning in compressed carbon dioxide: Hollow or open-cell fiber formation with a single nozzle configuration. J Supercrit Fluids, 2010, 53: 142-150??
[20]  44 Ghaderi R, Artursson P, Carlfors J. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Pharm Res, 1999, 16: 676-681??
[21]  51 Adami R, Sesti Osséo L, Huopalahti R, et al. Supercritical antisolvent micronization of PVA by semi-continuous and batch processing. J Supercrit Fluids, 2007, 42: 288-298??
[22]  49 Dukhin S S, Shen Y, Dave R, et al. Droplet mass transfer, intradroplet nucleation and submicron particle production in two-phase flow of solvent-supercritical antisolvent emulsion. Colloid Surf A-Physicochem Eng Asp, 2005, 261: 163-176??
[23]  50 Reverchon E, Adami R, Caputo G, et al. Spherical microparticles production by supercritical antisolvent precipitation: Interpretation of results. J Supercrit Fluids, 2008, 47: 70-84??
[24]  2 Wang J, Shaw L L. Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials, 2009, 30: 6565-6572??
[25]  3 Peng C, Zhao Q, Gao C. Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayers-coated CaCO3 microparticles. Colloid Surf A-Physicochem Eng Asp, 2010, 353: 132-139 ??
[26]  4 Wu C, Zreiqat H. Porous bioactive diopside (CaMgSi2O6) ceramic microspheres for drug delivery. Acta Biomater, 2010, 6: 820-829 ??
[27]  5 Gokmen M T, Du Prez F E. Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci, 2012, 37: 365-405 ??
[28]  7 李贵安, 朱庭良, 邓仲勋, 等. 复合气凝胶的常压干燥制备及制备条件对其结构的影响. 科学通报, 2010, 55: 733-738
[29]  11 Yang Y, Bajaj N, Xu P, et al. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials, 2009, 30: 1947-1953 ??
[30]  12 Chen A Z, Wang G Y, Wang S B, et al. Formation of methotrexate-PLLA-PEG-PLLA composite microspheres by suspension-enhanced dispersion by supercritical CO2. Int J Nanomed, 2012, 7: 3013-3022
[31]  15 林晓芬, 陈爱政, 王士斌. 磁性氧化铁纳米颗粒的生物相容性研究进展. 科学通报, 2011, 56: 2223-2228
[32]  18 倪伟, 许群. 超临界流体技术制备有序材料研究进展. 科学通报, 2009, 54: 707-716
[33]  19 Chen Z, Zhuo M, Xue F, et al. Preparation of magnetically separable mesoporous silica microspheres with open pore systems in supercritical carbon dioxide. Ind Eng Chem Res, 2009, 48: 3441-3445??
[34]  20 Jiao J, Xu Q, Li L. Porous TiO2/SiO2 composite prepared using PEG as template direction reagent with assistance of supercritical CO2. J Colloid Interface Sci, 2007, 316: 596-603??
[35]  21 López-Aranguren P, Saurina J, Vega L F, et al. Sorption of tryalkoxysilane in low-cost porous silicates using a supercritical CO2 method. Microporous Mesoporous Mat, 2012, 148: 15-24??
[36]  22 Gorle B S K, Smirnova I, Arlt W. Adsorptive crystallization of benzoic acid in aerogels from supercritical solutions. J Supercrit Fluids, 2010, 52: 249-257??
[37]  25 Ratanajiajaroen P, Ohshima M. Preparation of highly porous β-chitin structure through nonsolvent-solvent exchange-induced phase separation and supercritical CO2 drying. J Supercrit Fluids, 2012, 68: 31-38??
[38]  29 Lee K P, Gould G L. Aerogel powder therapeutic agents. US Patent, 6994842, 2006-06-07
[39]  32 郭各朴, 马青玉, 王昉, 等. 聚乳酸微孔支架材料热分解动力学特性. 科学通报, 2011, 56: 2850-2856
[40]  34 Huang S, Wu G, Chen S. Preparation of open cellular PMMA microspheres by supercritical carbon dioxide foaming. J Supercrit Fluids, 2007, 40: 323-329??
[41]  35 Dias A M A, Braga M E M, Seabra I J, et al. Development of natural-based wound dressings impregnated with bioactive compounds and using supercritical carbon dioxide. Int J Pharm, 2011, 408: 9-19??
[42]  36 Varona S, Rodríguez-Rojo S, Martín á, et al. Supercritical impregnation of lavandin (Lavandula hybrida) essential oil in modified starch. J Supercrit Fluids, 2011, 58: 313-319??
[43]  37 Koushik K, Kompella U. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. Pharm Res, 2004, 21: 524-535??
[44]  38 Chen A Z, Li Y, Chen D, et al. Development of core-shell microcapsules by a novel supercritical CO2 process. J Mater Sci-Mater Med, 2009, 20: 751-758??
[45]  39 Yeo S D, Kiran E. Formation of polymer particles with supercritical fluids: A review. J Supercrit fluids, 2005, 34: 287-308??
[46]  40 Bleich J, Müller B W, Wassmus W. Aerosol solvent extraction system—A new microparticle production technique. Int J Pharm, 1993, 97: 111-117??
[47]  42 Dixon D J, Luna-Bárcenas G, Johnston K P. Microcellular microspheres and microballoons by precipitation with a vapour-liquid compressed fluid antisolvent. Polymer, 1994, 35: 3998-4005??
[48]  45 韩冠鲁. 超临界流体辅助雾化法制备壳聚糖-香精超细颗粒. 硕士学位论文. 上海: 华东理工大学, 2011. 27-56
[49]  46 朱自强, 关怡新, 姚善泾. 超临界辅助雾化制备适于气溶胶给药的药物微粒. 化工学报, 2005, 56: 187-196
[50]  47 Wang Q, Guan Y X, Yao S J, et al. Controllable preparation and formation mechanism of BSA microparticles using supercritical assisted atomization with an enhanced mixer. J Supercrit Fluids, 2011, 56: 97-104??
[51]  48 Reverchon E, De Marco I. Mechanisms controlling supercritical antisolvent precipitate morphology. Chem Eng J, 2011, 169: 358-370??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133