全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

聚合物太阳能电池中富勒烯受体材料研究进展

DOI: 10.1360/972012-955, PP. 3437-3449

Keywords: 富勒烯,电子受体,聚合物,太阳能电池

Full-Text   Cite this paper   Add to My Lib

Abstract:

聚合物太阳能电池具有成本低、质量轻以及柔性可弯曲等优点,近年来受到了国内外的广泛关注.太阳能电池光电转换效率也得到了飞速的提高,从原来不到1%提高到了目前的8%以上.富勒烯是公认的聚合物太阳能电池最佳受体材料,其化学修饰和物理化学性质表征是过去十几年聚合物太阳能电池研究领域的热点.本文就近年来富勒烯衍生物受体材料的开发和改进研究进行归纳,阐述聚合物太阳能电池性能与富勒烯衍生物受体材料结构之间的密切关系,为今后开发高效的聚合物太阳能电池受体材料提供参考.

References

[1]  1 Thompson B C, Frechet J M J. Organic photovoltaics polymer-fullerene composite solar cells. Angew Chem Int Ed, 2008, 47: 58-77??
[2]  5 Dou L, You J, Yang J, et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photon, 2012, 6: 180-185??
[3]  8 Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789-1791??
[4]  9 Günes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells. Chem Rev, 2007, 107: 1324-1338??
[5]  13 Li C Z, Yip H L, Jen A K Y. Functional fullerenes for organic photovoltaics. J Mater Chem, 2012, 22: 4161-4177??
[6]  16 Hummelen J C, Knight B W, Lepeq F, et al. Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem, 1995, 60: 532-538??
[7]  17 Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater, 2005, 4: 864-868??
[8]  18 Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater, 2005, 15: 1617-1622??
[9]  19 Kim Y, Cook S, Tuladhar S M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: Fullerene solar cells. Nat Mater, 2006, 5: 197-203??
[10]  20 Anthony J E, Facchetti A, Heeney M, et al. n-Type organic semiconductors in organic electronics. Adv Mater, 2010, 22: 3876-3892??
[11]  fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed, 2003, 42: 3371-3375??
[12]  22 Kooistra F B, Mihailetchi V D, Popescu L M, et al. New C-84 derivative and its application in a bulk heterojunction solar cell. Chem Mater, 2006, 18: 3068-3073??
[13]  23 Ross R B, Cardona C M, Guldi D M, et al. Endohedral fullerenes for organic photovoltaic devices. Nat Mater, 2009, 8: 208-212??
[14]  24 Shu C, Xu W, Slebodnick C, et al. Syntheses and structures of phenyl-C81-butyric acid methyl esters (PCBMs) from M3N@C80. Org Lett, 2009, 11: 1753-1756??
[15]  25 Ross R B, Cardona C M, Swain F B, et al. Tuning conversion efficiency in metallo endohedral fullerene-based organic photovoltaic devices. Adv Funct Mater, 2009, 19: 2332-2337??
[16]  28 Zhang Y, Yip H L, Acton O, et al. A simple and effective way of achieving highly efficient and thermally stable bulk-heterojunction polymer solar cells using amorphous fullerene derivatives as electron acceptor. Chem Mater, 2009, 21: 2598-2600??
[17]  31 Kuhlmann J C, Bruyn P D, Bouwer R K M, et al. Improving the compatibility of fullerene acceptors with fluorene-containing donor- polymers in organic photovoltaic devices. Chem Commun, 2010, 46: 7232-7234??
[18]  32 Troshin P A, Khakina E A, Egginger M, et al. Self-assembly of thiophene- and furan-appended methanofullerenes with poly(3-Hexylthi- ophene) in organic solar cells. Chem Sus Chem, 2010, 3: 356-366
[19]  33 Zhao G, He Y, Xu Z, et al. Effect of carbon chain length in the substituent of PCBM-like molecules on their photovoltaic properties. Adv Funct Mater, 2010, 20: 1480-1487??
[20]  36 Zheng L P, Zhou Q M, Deng X Y, et al. Methanofullerenes used as electron acceptors in polymer photovoltaic devices. J Phys Chem B, 2004, 108: 11921-11926??
[21]  37 Mikroyannidis J A, Kabanakis A N, Sharma S S, et al. A simple and effective modification of PCBM for use as an electron acceptor in efficient bulk heterojunction solar cells. Adv Funct Mater, 2011, 21: 746-755??
[22]  38 Mikroyannidis J A, Tsagkournos D V, Balraju P, et al. Efficient bulk heterojunction solar cells using an alternating phenylenevinylene copolymer with dithenyl(thienothiadiazole) segments as donor and PCBM or modified PCBM as acceptor. Sol Energy Mater Sol Cells, 2011, 95: 3025-3035??
[23]  39 Mikroyannidis J A, Kabanakis A N, Suresh P, et al. Efficient bulk heterojunction solar cells based on a broadly absorbing phenylenevinylene copolymer containing thiophene and pyrrole Rings. J Phys Chem C, 2011, 115: 7056-7066??
[24]  40 Lenes M, Wetzelaer G, Kooistra F B, et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater, 2008, 20: 2116-2119??
[25]  PCBM and its application for thermally stable polymer solar cells. Chem Commun, 2011, 47: 10082-10084
[26]  44 Riedel I, von Hauff E, Parisi H, et al. Diphenylmethanofullerenes: New and efficient acceptors in bulk-heterojunction solar cells. Adv Funct Mater, 2005, 15: 1979-1987??
[27]  45 Sánchez-Díaz A, Izquierdo M, Filippone S, et al. The origin of the high voltage in DPM12/P3HT organic solar cells. Adv Funct Mater, 2010, 20: 2695-2700??
[28]  48 Matsumoto K, Hashimoto K, Kamo M, et al. Design of fulleropyrrolidine derivatives as an acceptor molecule in a thin layer organic solar cell. J Mater Chem, 2010, 20: 9226-9230??
[29]  49 Matsuo Y, Sato Y, Niinomi T, et al. Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl
[30]  fullerene. J Am Chem Soc, 2009, 131: 16048-16050??
[31]  51 Zhao G, He Y, Li Y. 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater, 2010, 22: 4355-4358
[32]  52 Cheng Y J, Hsieh C H, He Y, et al. Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J Am Chem Soc, 2010, 132: 17381-17383??
[33]  58 He Y, Chen H Y, Zhao G, et al. Synthesis and photovoltaic properties of biindene-C70 monoadduct as acceptor in polymer solar cells. Sol Energy Mater Sol Cells, 2011, 95: 1762-1766??
[34]  fullerene bisadducts for efficient and stable polymer solar cells. Chem Commun, 2012, 48: 425-427??
[35]  62 Zhang C, Chen S, Xiao Z, et al. Synthesis of mono- and bisadducts of thieno-o-quinodimethane with C60 for efficient polymer solar cells. Org Lett, 2012, 14: 1508-1511??
[36]  63 Kim K H, Kang H, Nam S Y, et al. Facile synthesis of o-xylenyl fullerene multiadducts for high open circuit voltage and efficient polymer solar cells. Chem Mater, 2011, 23: 5090-5095??
[37]  67 Liu C, Xiao S, Shu X, et al. Synthesis and photovoltaic properties of novel monoadducts and bisadducts based on amide methanofullerene. ACS Appl Mater Interf, 2012, 4: 1065-1071??
[38]  69 Hsieh C H, Cheng Y J, Li P J, et al. Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. J Am Chem Soc, 2010, 132: 4887-4893??
[39]  70 Cheng Y J, Cao F Y, Lin W C, et al. Self-assembled and cross-linked fullerene interlayer on titanium oxide for highly efficient inverted polymer solar cells. Chem Mater, 2011, 23: 1512-1518??
[40]  72 Jung J W, Jo J W, Jo W H. Enhanced performance and air stability of polymer solar cells by formation of a self-assembled buffer layer from fullerene-end-capped poly(ethylene glycol). Adv Mater, 2011, 23: 1782-1787??
[41]  74 Yip H L, Jen A K Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ Sci, 2012, 5: 5994-6011??
[42]  75 Lee J U, Jung J W, Emrick T, et al. Synthesis of C60-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. J Mater Chem, 2010, 20: 3287-3294??
[43]  2 Dennler G, Scharber M C, Brabec C J. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater, 2009, 21: 1323-1338??
[44]  3 Brabec C J, Gowrisanker S, Halls J J M, et al. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater, 2010, 22: 3839-3856??
[45]  4 He Z, Zhong C, Huang X, et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater, 2011, 23: 4636-4643??
[46]  6 Imahori H, Tamaki K, Yamada H, et al. Photosynthetic electron transfer using fullerenes as novel acceptors. Carbon, 2000, 38: 1599-1605??
[47]  7 Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258: 1474-1476??
[48]  10 Chen J, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709-1718??
[49]  11 Cheng Y J, Yang S H, Hsu C-S. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev, 2009, 109: 5868-5923??
[50]  12 He Y, Li Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys, 2011, 13: 1970-1983
[51]  14 Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminster fullerene. Nature, 1985, 318: 162-163??
[52]  15 Kr?tschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60: A new form of carbon. Nature, 1990, 347: 354-358??
[53]  21 Wienk M M, Kroon J M, Verhees W J H, et al. Efficient methano
[54]  26 Kooistra F B, Knol J, Kastenberg F, et al. Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. Org Lett, 2007, 9: 551-554??
[55]  27 Yang C, Kim J Y, Cho S, et al. Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors. J Am Chem Soc, 2008, 130: 6444-6450??
[56]  29 Choi J H, Son K I, Kim T, et al. Thienyl-substituted methanofullerene derivatives for organic photovoltaic cells. J Mater Chem, 2010, 20: 475-482??
[57]  30 Zhao H, Guo X, Tian H, et al. Alkyl substituted [6,-thienyl-C61-butyric acid methyl esters: Easily accessible acceptor materials for bulk-heterojunction polymer solar cells. J Mater Chem, 2010, 20: 3092-3097
[58]  34 Liu C, Li Y, Li C, et al. New methanofullerenes containing amide as electron acceptor for construction photovoltaic devices. J Phys Chem C, 2009, 113: 21970-21975??
[59]  35 Troshin P A, Hoppe H, Renz J, et al. Material solubility-photovoltaic performance relationship in the design of novel fullerene derivatives for bulk heterojunction solar cells. Adv Funct Mater, 2009, 19: 779-788??
[60]  41 Lenes M, Shelton S W, Sieval A B, et al. Electron trapping in higher adduct fullerene-based solar cells. Adv Funct Mater, 2009, 19: 3002-3007??
[61]  42 He Y, Peng B, Zhao G, et al. Indene addition of [6,-phenyl-C61-butyric acid methyl ester for high-performance acceptor in polymer solar cells. J Phys Chem C, 2011, 115: 4340-4344
[62]  43 Li C Z, Chien S C, Yip H L, et al. Facile synthesis of a 56[small pi]-electron 1,2-dihydromethano-
[63]  46 Bolink H J, Coronado E, Forment-Aliaga A, et al. Polymer solar cells based on diphenylmethanofullerenes with reduced sidechain length. J Mater Chem, 2011, 21: 1382-1386??
[64]  47 Backer S A, Sivula K, Kavulak D F, et al. High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives. Chem Mater, 2007, 19: 2927-2929??
[65]  50 He Y, Chen H Y, Hou J, et al. Indene-C60 bisadduct: A new acceptor for high-performance polymer solar cells. J Am Chem Soc, 2010, 132: 1377-1382??
[66]  53 Chang C Y, Wu C E, Chen S Y, et al. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angew Chem Int Ed, 2011, 50: 9386-9390??
[67]  54 He Y J, Zhao G J, Peng B, et al. High-yield synthesis and electrochemical and photovoltaic properties of indene-C70 bisadduct. Adv Funct Mater, 2010, 20: 3383-3389??
[68]  55 Sun Y, Cui C, Wang H, et al. Efficiency enhancement of polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct via methylthiophene additive. Adv Energy Mater, 2011, 1: 1058-1061??
[69]  56 Fan X, Cui C, Fang G, et al. Efficient polymer solar cells based on poly(3-hexylthiophene): Indene-C70 bisadduct with a MoO3 buffer layer. Adv Funct Mater, 2012, 22: 585-590??
[70]  57 He Y, Chen H Y, Zhao G, et al. Biindene-C60 adducts for the application as acceptor in polymer solar cells with higher open-circuit- voltage. Sol Energy Mater Sol Cells, 2011, 95: 899-903??
[71]  59 Meng X Y, Zhang W Q, Tan Z A, et al. Dihydronaphthyl-based
[72]  60 Meng X Y, Zhang W Q, Tan Z A, et al. Highly efficient and thermally stable polymer solar cells with dihydronaphthyl-based
[73]  fullerene bisadduct derivative as the acceptor. Adv Funct Mater, 2012, 22: 2187-2193??
[74]  61 Cheng Y J, Liao M H, Chang C Y, et al. Di(4-methylphenyl)methano-C60 bis-adduct for efficient and stable organic photovoltaics with enhanced open-circuit voltage. Chem Mater, 2011, 23: 4056-4062??
[75]  64 Voroshazi E, Vasseur K, Aernouts T, et al. Novel bis-C60 derivative compared to other fullerene bis-adducts in high efficiency polymer photovoltaic cells. J Mater Chem, 2011, 21: 17345-17352??
[76]  65 Chang C L, Liang C W, Syu J J, et al. Triphenylamine-substituted methanofullerene derivatives for enhanced open-circuit voltages and efficiencies in polymer solar cells. Sol Energy Mater Sol Cell, 2011, 95: 2371-2379??
[77]  66 Deng L L, Feng J, Sun L C, et al. Functionalized dihydronaphthyl-C60 derivatives as acceptors for efficient polymer solar cells with tunable photovoltaic properties. Sol Energy Mater Sol Cell, 2012, 96: 113-120
[78]  68 Wei Q, Nishizawa T, Tajima K, et al. Self-organized buffer layers in organic solar cells. Adv Mater, 2008, 20: 2211-2216??
[79]  71 Cho N, Yip H L, Hau S K, et al. n-Doping of thermally polymerizable fullerenes as an electron transporting layer for inverted polymer solar cells. J Mater Chem, 2011, 21: 6956-6961??
[80]  73 Li C Z, Chueh C C, Yip H L, et al. Effective interfacial layer to enhance efficiency of polymer solar cells via solution-processed fullerene-surfactants. J Mater Chem, 2012, 22: 8574-8578??
[81]  76 Cheng Y J, Hsieh C H, Li P J, et al. Morphological stabilization by in situ polymerization of fullerene derivatives leading to efficient, thermally stable organic photovoltaics. Adv Funct Mater, 2011, 21: 1723-1732??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133