全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2012 

TiO2纳米管生物膜的血液相容性及重吸收功能

, PP. 3538-3544

Keywords: TiO2纳米管阵列,血液相容性,重吸收功能,生物膜

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用阳极氧化法制备新型高强度的TiO2纳米管薄膜,通过对纳米管底部进行HF气体腐蚀获得了两端通透的TiO2纳米管阵列薄膜.利用混合种植方法于两端通透的纳米管阵列表面种植了猪肾小管上皮细胞(LLC-PK1)和血管内皮细胞(ECV304),成功制备了具有生理功能的TiO2纳米管生物膜材料.运用血浆复钙化法对比研究了载玻片、纯金属钛片、未种植细胞TiO2纳米管和种植细胞TiO2纳米管的血液相容性,并采用自制的装置检测了该生物膜对钠钾离子的重吸收功能.结果表明,种植细胞的纳米管阵列薄膜的血液相容性要远远好于其他对照组,且该生物膜具有很好的重吸收功能,证实所制备的TiO2纳米管阵列生物膜具有良好的生理功能,是用于生物透析较为理想的候选材料.

References

[1]  7 Fissell W H, Lou L, Abrishami S, et al. Bioartificial kidney ameliorates gram-negative bacteria-induced septic shock in uremic animals. J Amer Soc Nephrol, 2003, 14: 454-461??
[2]  10 黄大伟. 生物人工肾单位的构建与体外功能评估. 博士学位论文. 北京: 中国人民解放军军医进修学院, 2008
[3]  11 Fissell W H, Dubnisheva A, Eldridge A N, et al. High-performance silicon nanopore hemofiltration membranes. J Membrane Sci, 2009, 326: 58??
[4]  14 Peng L, Barczak A J, Barbeau R A, et al. Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. Nano Lett, 2010, 10: 143-148??
[5]  17 Popat K, Leoni L, Grimes C, et al. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials, 2007, 28: 3188-3197??
[6]  18 Peng L, Eltgroth M L, LaTempa T J, et al. The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials, 2009, 30: 1268-1272??
[7]  19 陶杰, 陶海军, 包祖国, 等. 有机电解液中钛基材表面TiO2纳米管阵列生长机制的研究. 稀有金属材料与工程, 2009, 38: 967-971
[8]  20 Zhu W, Liu X, Liu H Q, et al. An efficient approach to control the morphology and the adhesion properties of anodized TiO2 nanotube arrays for improved photoconversion efficiency. Electrochim Acta, 2011, 56: 2618-2626??
[9]  24 Yang L X, Luo S L, Cai Q Y. A review on TiO2 nanotube arrays: Fabrication, properties, and sensing applications. Chin Sci Bull, 2010, 55: 331-338??
[10]  25 杨丽霞, 罗胜联, 蔡青云, 等. 二氧化钛纳米管阵列的制备、性能及传感应用研究. 科学通报, 2009, 54: 3605-3611
[11]  30 Xu F J, Li Y L, Kang E T, et al. Heparin-coupled poly(poly(ethyleneglycol) monomethacrylate)-Si(111) hybrids and their blood compatible surfaces. Biomacromolecules, 2005, 6: 1759-1768??
[12]  31 Wang D A, Ji J, Feng L X. Selective binding of albumin on stearyl poly(ethylene oxide) coupling polymer-modified poly(ether urethane) surfaces. Biomaterials, 2001, 12: 1123-1146??
[13]  1 Humes H D, Mackay S M, Funke A J, et al. Tissue engineering of the bioartificial renal tubule assist device: In vitro transport and metabolic characteristics. Kid Int, 1999, 55: 2502-2514??
[14]  2 Ozgen N, Terashima1 M, Aung T, et al. Evaluation of long-term transport ability of a bioartificial renal tubule device using LLC-PK1 cells. Nephrol Dial Trans, 2004, 19: 2198-2207??
[15]  3 Humes H D. The bioartificial renal tubule: Prospects to improve supportive care in acute renal failure. Renal Fail, 1996, 18: 405-408??
[16]  4 Humes H D, Buffington D A, Mackay S M, et al. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotech, 1999, 17: 451-455??
[17]  5 Humes H D, Weitzel W F, Bartlett R H, et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kid Int, 2004, 66: 1578??
[18]  6 Humes H D. Stem cells: The next therapeutic frontier. Transthe Amer Clin Climatol Assoc, 2005, 116: 167-184
[19]  8 王笑云, 应旭旻, 沈霞. 生物人工肾小管体外构建的研究. 南京医科大学学报, 2001, 21: 167
[20]  9 黄大伟, 傅博, 陈香美, 等. 细胞混合种植法构建生物人工肾小管的初步研究. 中国药物与临床, 2008, 8: 165-167
[21]  12 Zeman L J, Zydney A L. Microfiltration and Ultrafiltration: Principles and Applications. New York: Marcel Dekker, 1996
[22]  13 Roy S, Dubnisheva A, Eldridge A, et al. Silicon nanopore membrane technology for an implantable artificial kidney. Transducers, 2009, 755-760
[23]  15 Smith B S, Yoriya S, Grissom L, et al. Hemocompatibility of titania nanotube array. J Biomed Mater Res Part A, 2010, 95: 350-360
[24]  16 Ainslie K M, Tao S L, Popat K C, et al. In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res Part A, 2009, 91A: 647-655
[25]  21 Zhu W, Liu X, Liu H Q, et al. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. J Am Chem Soc, 2010, 132: 12619-12626??
[26]  22 朱文, 刘喜, 柳慧琼, 等. 氧化钛纳米管阵列的表面聚集控制及光电化学特性. 稀有金属材料与工程, 2011, 40: 1069-1074
[27]  23 Roy P, Berger S, Schmuki. TiO2 nanotubes: Synthesis and applications. Angew Chem Int Ed, 2011, 50: 2904-2939??
[28]  26 Ji H M, Lu H X, Ma D F, et al. Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays. Chin Sci Bull, 2008, 53: 1352-1357??
[29]  27 Kant K, Losic D. A simple approach for synthesis of TiO2 nanotubes with through-hole morphology. Phys Status Solid, 2009, 3: 139-141??
[30]  28 Paulose M, Prakasam H E, Varghese O K, et al. TiO2 nanotube arrays of 1000 m length by anodization of titanium foil: Phenol red diffusion. J Phys Chem C, 2007, 111: 14992-14997??
[31]  29 柳慧琼, 朱文, 刘剑峰, 等. TiO2纳米管阵列的表面特性对猪肾小管上皮细胞生长状态的影响. 中国科学: 生命科学, 2011, 41: 249-257

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133