11 Fissell W H, Dubnisheva A, Eldridge A N, et al. High-performance silicon nanopore hemofiltration membranes. J Membrane Sci, 2009, 326: 58??
[4]
14 Peng L, Barczak A J, Barbeau R A, et al. Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. Nano Lett, 2010, 10: 143-148??
[5]
17 Popat K, Leoni L, Grimes C, et al. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials, 2007, 28: 3188-3197??
[6]
18 Peng L, Eltgroth M L, LaTempa T J, et al. The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials, 2009, 30: 1268-1272??
20 Zhu W, Liu X, Liu H Q, et al. An efficient approach to control the morphology and the adhesion properties of anodized TiO2 nanotube arrays for improved photoconversion efficiency. Electrochim Acta, 2011, 56: 2618-2626??
[9]
24 Yang L X, Luo S L, Cai Q Y. A review on TiO2 nanotube arrays: Fabrication, properties, and sensing applications. Chin Sci Bull, 2010, 55: 331-338??
30 Xu F J, Li Y L, Kang E T, et al. Heparin-coupled poly(poly(ethyleneglycol) monomethacrylate)-Si(111) hybrids and their blood compatible surfaces. Biomacromolecules, 2005, 6: 1759-1768??
[12]
31 Wang D A, Ji J, Feng L X. Selective binding of albumin on stearyl poly(ethylene oxide) coupling polymer-modified poly(ether urethane) surfaces. Biomaterials, 2001, 12: 1123-1146??
[13]
1 Humes H D, Mackay S M, Funke A J, et al. Tissue engineering of the bioartificial renal tubule assist device: In vitro transport and metabolic characteristics. Kid Int, 1999, 55: 2502-2514??
[14]
2 Ozgen N, Terashima1 M, Aung T, et al. Evaluation of long-term transport ability of a bioartificial renal tubule device using LLC-PK1 cells. Nephrol Dial Trans, 2004, 19: 2198-2207??
[15]
3 Humes H D. The bioartificial renal tubule: Prospects to improve supportive care in acute renal failure. Renal Fail, 1996, 18: 405-408??
[16]
4 Humes H D, Buffington D A, Mackay S M, et al. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotech, 1999, 17: 451-455??
[17]
5 Humes H D, Weitzel W F, Bartlett R H, et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kid Int, 2004, 66: 1578??
[18]
6 Humes H D. Stem cells: The next therapeutic frontier. Transthe Amer Clin Climatol Assoc, 2005, 116: 167-184
12 Zeman L J, Zydney A L. Microfiltration and Ultrafiltration: Principles and Applications. New York: Marcel Dekker, 1996
[22]
13 Roy S, Dubnisheva A, Eldridge A, et al. Silicon nanopore membrane technology for an implantable artificial kidney. Transducers, 2009, 755-760
[23]
15 Smith B S, Yoriya S, Grissom L, et al. Hemocompatibility of titania nanotube array. J Biomed Mater Res Part A, 2010, 95: 350-360
[24]
16 Ainslie K M, Tao S L, Popat K C, et al. In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res Part A, 2009, 91A: 647-655
[25]
21 Zhu W, Liu X, Liu H Q, et al. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. J Am Chem Soc, 2010, 132: 12619-12626??
23 Roy P, Berger S, Schmuki. TiO2 nanotubes: Synthesis and applications. Angew Chem Int Ed, 2011, 50: 2904-2939??
[28]
26 Ji H M, Lu H X, Ma D F, et al. Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays. Chin Sci Bull, 2008, 53: 1352-1357??
[29]
27 Kant K, Losic D. A simple approach for synthesis of TiO2 nanotubes with through-hole morphology. Phys Status Solid, 2009, 3: 139-141??
[30]
28 Paulose M, Prakasam H E, Varghese O K, et al. TiO2 nanotube arrays of 1000 m length by anodization of titanium foil: Phenol red diffusion. J Phys Chem C, 2007, 111: 14992-14997??