1 Zhao Z J. The middle Yangtze region in China is one place where rice was domesticated: Phytolith evidence from the Diaotonghuan cave, northern Jiangxi. Antiquity, 1998, 72: 885-897
[2]
2 Jiang L P, Liu L. New evidence for the origins of sedentism and rice domestication in the Lower Yangzi River, China. Antiquity, 2006, 80: 355-361
[3]
3 Lu H Y, Zhang J P, Liu K B, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA, 2009, 106: 7367-7372
[4]
7 Brar D S, Khush G S. Alien introgression in rice. Plant Mol Biol, 1997, 35: 35-47
[5]
8 Yuan L P. Hybrid rice breeding in China. In: Virmani S S, Siddiq E A, Muralidharan K, eds. Advances in Hybrid Rice Technology. Los Ba?os: International Rice Research Institute (IRRI), 1998. 27-34
[6]
20 Xu X, Lu B R, Chen Y H, et al. Inferring population history from fine-scale spatial genetic analysis in Oryza rufipogon (Poaceae). Mol Ecol, 2006, 15: 1535-1544
[7]
21 Chen L J, Lee D S, Song Z P, et al. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot, 2004, 93: 67-73
[8]
27 Baack E J, Rieseberg R H. A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev, 2007, 17: 513-518
[9]
29 Lu B R. Multi-directional gene flow among wild, weedy, and cultivated soybeans. In: Gressel J, ed. Crop Ferality and Volunteerism. Boca Raton: CRC Press, 2005. 137-147
[10]
30 Rong J, Song Z P, de Jong T, et al. Modelling pollen-mediated gene flow in rice: Risk assessment and management of transgene escape. Plant Biotechnol J, 2010, 8: 452-464
[11]
31 Lu B R. Introgression of transgenic crop alleles: Its evolutionary impacts on conserving genetic diversity of crop wild relatives. J Syst Evol, 2013, 51: 245-262
[12]
34 Tsaftarisa A S, Kafkaa M. Mechanisms of heterosis in crop plants. J Crop Prod, 1997, 1: 95-111
36 Stewart C N Jr, Halfhill M D, Warwick S I. Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet, 2003, 4: 806-817
[15]
37 Pigliucci M, Murren C J. Genetic assimilation and a possible evolutionary paradox: Can macroevolution sometimes be so fast as to pass us by? Evolution, 2003, 57: 1455-1464
[16]
38 Baard E H W. The status of some rare and endangered endemic reptiles and amphibians of the southwestern Cape Province, South Africa. Biol Conserv, 1989, 49: 161-168
[17]
39 Miller R R, Williams J D, Williams J E. Extinction of North American fishes during the past century. Fisheries, 1989, 14: 22-38
[18]
40 Vaughan D A, Lu B R, Tomooka N. The evolving story of rice evolution. Plant Sci, 2008, 174: 394-408
[19]
41 Nevo E, Baum B, Beiles A, et al. Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum, in the Fertile Crescent. Genet Resour Crop Evol, 1998, 45: 151-159
[20]
42 Smith J M, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res, 1974, 23: 23-35
[21]
45 Levin D A, Francisco-Ortega J, Jansen R K. Hybridization and the extinction of rare plant species. Conserv Biol, 1996, 10: 10-16
[22]
48 Simberloff D. The contribution of population and community biology to conservation science. Annu Rev Ecol Syst, 1988, 19: 473-511
[23]
49 Ellstrand E C, Meirmans P, Rong J, et al. Introgression of crop alleles into wild or weedy populations. Trends Ecol Evol, 2013, 44: 325-345
[24]
51 Corander J, Waldmann P, Marttinen P, et al. BAPS 2: Enhanced possibilities for the analysis of genetic population structure. Bioinformatics, 2004, 20: 2363-2369
[25]
52 Wilson G A, Rannala B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 2003, 163: 1177-1191
[26]
53 Beaumont M A. Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst, 2010, 41: 379-406
[27]
54 Rieseberg L H, Zona S, Aberbom L. Hybridization in the island endemic, Catalina mahogany. Conserv Biol, 1989, 3: 52-58
[28]
55 Song Z P, Lu B R, Chen J K. Pollen flow of cultivated rice measured under experimental conditions. Biodivers Conserv, 2004, 13: 579-590
[29]
59 Kuroda Y, Kaga A, Tomooka N, et al. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation. Mol Ecol, 2006, 15: 959-974
[30]
61 Zhao R, Xia H B, Lu B R. Fine-scale genetic structure enhances biparental inbreeding by promoting mating events between more related individuals in wild soybean populations. Am J Bot, 2009, 96: 1138-1147
[31]
4 Wei H T, Li J, Peng Z S, et al. Relationships of Aegilops tauschii revealed by DNA fingerprints: The evidence of agriculture exchange between China and the West. Prog Nat Sci, 2008, 18: 1525-1531
[32]
5 Piperno D R, Flannery K V. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA, 98: 2101-2103
9 Harlan J R, de Wet J M. Toward a rational classification of cultivated plants. Taxon, 1971, 20: 509-517
[35]
10 Ellstrand N C. Dangerous Liaisons? When Cultivated Plants Mate with Their Wild Relatives. Baltimore: Johns Hopkins University Press, 2003
[36]
11 Lu B R, Snow A A. Gene flow from genetically modified rice and its environmental consequences. BioScience, 2005, 55: 669-678
[37]
12 Lu B R, Yang C. Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences. Biotechnol Adv, 2009, 27: 1083-1091
[38]
13 卢宝荣. 稻种遗传资源多样性的开发利用及保护. 生物多样性, 1998, 6: 63-72
[39]
14 Ellstrand N C, Prentice H C, Hancock J F. Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst, 1999, 30: 539-563
[40]
15 Ellstrand N C, Elam D R. Population genetic consequences of small population size: Implications for plant conservation. Annu Rev Ecol Syst 1993, 24: 217-242
[41]
16 Slatkin M. Gene flow in natural populations. Annu Rev Ecol Syst, 1985, 16: 393-430
[42]
17 Song Z P, Lu B R, Zhu Y G, et al. Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytol, 2003, 157: 657-665
[43]
18 Song Z P, Zhu W Y, Rong J, et al. Evidences of introgression from cultivated rice to Oryza rufipogon (Poaceae) populations based on SSR fingerprinting: Implications for wild rice differentiation and conservation. Evol Ecol, 2006, 20: 501-522
[44]
19 Song Z P, Xu X, Wang B, et al. Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. Theor Appl Genet, 2003, 107: 1492-1499
[45]
22 Xia H B, Wang W, Xia H, et al. Conspecific crop-weed introgression influences evolution of weedy rice (Oryza sativa f. spontanea) across a geographical range. PLoS One, 2011, 6: e16189
[46]
23 Jiang Z X, Xia H B, Basso B, et al. Introgression from cultivated rice influences genetic differentiation of weedy rice populations at a local spatial scale. Theor Appl Genet, 2012, 124: 309-322
[47]
24 Kiang Y T, Antonvics J, Wu L. The extinction of wild rice (Oryza perennis formosa) in Taiwan. J Asian Ecol, 1979, 1: 1-9
[48]
25 Arias D M, Rieseberg H. Gene flow between cultivated and wild sunflowers. Theor Appl Genet, 1994, 89: 655-660
[49]
26 Rieseberg L H, Carney S E. Plant hybridization. New Phytol, 1998, 140: 599-624
[50]
28 Ellstrand N C, Garner L C, Hegde S, et al. Spontaneous hybridization between maize and teosinte. J Hered, 2007, 98: 183-187
[51]
32 Lu B R. The challenge of in situ conservation of crop wild relatives in the biotechnology era—A case study of wild rice species. In: Maxted N, Dulloo M E, Lord-Lloyd B V, et al, eds. Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces. Wallingford: CAB International, 2012. 211-217
[52]
33 Schierup M H, Christiansen F B. Inbreeding depression and outbreeding depression in plants. Heredity, 1996, 77: 461-468
[53]
43 Zhu Y Q, Ellstrand N C, Lu B R. Sequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus sh4 played a minor role in Asian rice domestication. Evol Ecol, 2012, 2: 2106-2113
[54]
44 Palaisa K, Morgante M, Tingey S, et al. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA, 2004, 101: 9885-9890
[55]
46 Rhymer J M, Simberloff D. Extinction by hybridization and introgression. Annu Rev Ecol Syst, 1996, 27: 83-109
[56]
47 Arnold M L, Bulger M R, Burke J M, et al. Natural hybridization: How low can you go and still be important? Ecology, 1999, 80: 371-381
[57]
50 James C. Global Status of Commercialized Biotech/GM Crops: 2012. ISAAA Brief 44-2012. New York: ISAAA, 2012
[58]
56 Lu B R. Transgene escape from GM crops and potential biosafety consequences: An environmental perspective. Coll Biosaf Rev, 2008, 4: 66-141
[59]
57 Kirk T K, Carlson J E, Ellstrand N, et al. Biological Confinement of Genetically Engineered Organisms. Washington: National Academies Press, 2004
[60]
58 Lu B R. Transgene containment by molecular means—is it possible and cost effective? Environ Biosafety Res, 2003, 2: 3-8
[61]
60 Jin Y, He T H, Lu B R. Fine scale genetic structure in wild soybean population (Glycine soja Sieb. et Zucc.) and the implication for conservation. New Phytol, 2003, 159: 513-519