全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

杂交-渐渗的遗传进化效应与栽培作物野生近缘种多样性保护

DOI: 10.1360/972013-660, PP. 479-492

Keywords: 遗传资源,保育,基因流,野生植物,遗传多样性,可持续利用

Full-Text   Cite this paper   Add to My Lib

Abstract:

野生近缘种的遗传多样性是栽培作物遗传改良的重要基因资源,对其进行合理保护和可持续利用对保障全球粮食安全具有十分重要的意义.由于生境遭到严重破坏,野生近缘种的生存状况受到严峻挑战,许多野生近缘种群体在诸多因素影响下已经濒危甚至灭绝.然而,最容易被忽略的影响是栽培作物与野生近缘种的天然杂交和基因渐渗及其所带来的遗传和进化效应.作物的杂交-渐渗可以改变野生近缘种群体的遗传结构和完整性,导致已保护野生群体遗传多样性丧失.杂交-渐渗对野生近缘种遗传多样性保护能造成怎样的影响,目前仍知之甚少.如何制定合理的策略来降低栽培作物基因渐渗对野生近缘种保护带所来的负面影响非常重要,而且具有极大的挑战性.

References

[1]  1 Zhao Z J. The middle Yangtze region in China is one place where rice was domesticated: Phytolith evidence from the Diaotonghuan cave, northern Jiangxi. Antiquity, 1998, 72: 885-897
[2]  2 Jiang L P, Liu L. New evidence for the origins of sedentism and rice domestication in the Lower Yangzi River, China. Antiquity, 2006, 80: 355-361
[3]  3 Lu H Y, Zhang J P, Liu K B, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA, 2009, 106: 7367-7372
[4]  7 Brar D S, Khush G S. Alien introgression in rice. Plant Mol Biol, 1997, 35: 35-47
[5]  8 Yuan L P. Hybrid rice breeding in China. In: Virmani S S, Siddiq E A, Muralidharan K, eds. Advances in Hybrid Rice Technology. Los Ba?os: International Rice Research Institute (IRRI), 1998. 27-34
[6]  20 Xu X, Lu B R, Chen Y H, et al. Inferring population history from fine-scale spatial genetic analysis in Oryza rufipogon (Poaceae). Mol Ecol, 2006, 15: 1535-1544
[7]  21 Chen L J, Lee D S, Song Z P, et al. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot, 2004, 93: 67-73
[8]  27 Baack E J, Rieseberg R H. A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev, 2007, 17: 513-518
[9]  29 Lu B R. Multi-directional gene flow among wild, weedy, and cultivated soybeans. In: Gressel J, ed. Crop Ferality and Volunteerism. Boca Raton: CRC Press, 2005. 137-147
[10]  30 Rong J, Song Z P, de Jong T, et al. Modelling pollen-mediated gene flow in rice: Risk assessment and management of transgene escape. Plant Biotechnol J, 2010, 8: 452-464
[11]  31 Lu B R. Introgression of transgenic crop alleles: Its evolutionary impacts on conserving genetic diversity of crop wild relatives. J Syst Evol, 2013, 51: 245-262
[12]  34 Tsaftarisa A S, Kafkaa M. Mechanisms of heterosis in crop plants. J Crop Prod, 1997, 1: 95-111
[13]  35 卢宝荣, 夏辉, 汪魏, 等. 天然杂交与遗传渐渗对植物入侵性的影响. 生物多样性, 2010, 18: 577-589
[14]  36 Stewart C N Jr, Halfhill M D, Warwick S I. Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet, 2003, 4: 806-817
[15]  37 Pigliucci M, Murren C J. Genetic assimilation and a possible evolutionary paradox: Can macroevolution sometimes be so fast as to pass us by? Evolution, 2003, 57: 1455-1464
[16]  38 Baard E H W. The status of some rare and endangered endemic reptiles and amphibians of the southwestern Cape Province, South Africa. Biol Conserv, 1989, 49: 161-168
[17]  39 Miller R R, Williams J D, Williams J E. Extinction of North American fishes during the past century. Fisheries, 1989, 14: 22-38
[18]  40 Vaughan D A, Lu B R, Tomooka N. The evolving story of rice evolution. Plant Sci, 2008, 174: 394-408
[19]  41 Nevo E, Baum B, Beiles A, et al. Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum, in the Fertile Crescent. Genet Resour Crop Evol, 1998, 45: 151-159
[20]  42 Smith J M, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res, 1974, 23: 23-35
[21]  45 Levin D A, Francisco-Ortega J, Jansen R K. Hybridization and the extinction of rare plant species. Conserv Biol, 1996, 10: 10-16
[22]  48 Simberloff D. The contribution of population and community biology to conservation science. Annu Rev Ecol Syst, 1988, 19: 473-511
[23]  49 Ellstrand E C, Meirmans P, Rong J, et al. Introgression of crop alleles into wild or weedy populations. Trends Ecol Evol, 2013, 44: 325-345
[24]  51 Corander J, Waldmann P, Marttinen P, et al. BAPS 2: Enhanced possibilities for the analysis of genetic population structure. Bioinformatics, 2004, 20: 2363-2369
[25]  52 Wilson G A, Rannala B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 2003, 163: 1177-1191
[26]  53 Beaumont M A. Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst, 2010, 41: 379-406
[27]  54 Rieseberg L H, Zona S, Aberbom L. Hybridization in the island endemic, Catalina mahogany. Conserv Biol, 1989, 3: 52-58
[28]  55 Song Z P, Lu B R, Chen J K. Pollen flow of cultivated rice measured under experimental conditions. Biodivers Conserv, 2004, 13: 579-590
[29]  59 Kuroda Y, Kaga A, Tomooka N, et al. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation. Mol Ecol, 2006, 15: 959-974
[30]  61 Zhao R, Xia H B, Lu B R. Fine-scale genetic structure enhances biparental inbreeding by promoting mating events between more related individuals in wild soybean populations. Am J Bot, 2009, 96: 1138-1147
[31]  4 Wei H T, Li J, Peng Z S, et al. Relationships of Aegilops tauschii revealed by DNA fingerprints: The evidence of agriculture exchange between China and the West. Prog Nat Sci, 2008, 18: 1525-1531
[32]  5 Piperno D R, Flannery K V. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA, 98: 2101-2103
[33]  6 李振声, 陈漱阳, 张楷. 普通小麦与长穗偃麦草的杂交育种及其遗传分析. 遗传学报, 1977, 4: 283-293
[34]  9 Harlan J R, de Wet J M. Toward a rational classification of cultivated plants. Taxon, 1971, 20: 509-517
[35]  10 Ellstrand N C. Dangerous Liaisons? When Cultivated Plants Mate with Their Wild Relatives. Baltimore: Johns Hopkins University Press, 2003
[36]  11 Lu B R, Snow A A. Gene flow from genetically modified rice and its environmental consequences. BioScience, 2005, 55: 669-678
[37]  12 Lu B R, Yang C. Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences. Biotechnol Adv, 2009, 27: 1083-1091
[38]  13 卢宝荣. 稻种遗传资源多样性的开发利用及保护. 生物多样性, 1998, 6: 63-72
[39]  14 Ellstrand N C, Prentice H C, Hancock J F. Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst, 1999, 30: 539-563
[40]  15 Ellstrand N C, Elam D R. Population genetic consequences of small population size: Implications for plant conservation. Annu Rev Ecol Syst 1993, 24: 217-242
[41]  16 Slatkin M. Gene flow in natural populations. Annu Rev Ecol Syst, 1985, 16: 393-430
[42]  17 Song Z P, Lu B R, Zhu Y G, et al. Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytol, 2003, 157: 657-665
[43]  18 Song Z P, Zhu W Y, Rong J, et al. Evidences of introgression from cultivated rice to Oryza rufipogon (Poaceae) populations based on SSR fingerprinting: Implications for wild rice differentiation and conservation. Evol Ecol, 2006, 20: 501-522
[44]  19 Song Z P, Xu X, Wang B, et al. Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. Theor Appl Genet, 2003, 107: 1492-1499
[45]  22 Xia H B, Wang W, Xia H, et al. Conspecific crop-weed introgression influences evolution of weedy rice (Oryza sativa f. spontanea) across a geographical range. PLoS One, 2011, 6: e16189
[46]  23 Jiang Z X, Xia H B, Basso B, et al. Introgression from cultivated rice influences genetic differentiation of weedy rice populations at a local spatial scale. Theor Appl Genet, 2012, 124: 309-322
[47]  24 Kiang Y T, Antonvics J, Wu L. The extinction of wild rice (Oryza perennis formosa) in Taiwan. J Asian Ecol, 1979, 1: 1-9
[48]  25 Arias D M, Rieseberg H. Gene flow between cultivated and wild sunflowers. Theor Appl Genet, 1994, 89: 655-660
[49]  26 Rieseberg L H, Carney S E. Plant hybridization. New Phytol, 1998, 140: 599-624
[50]  28 Ellstrand N C, Garner L C, Hegde S, et al. Spontaneous hybridization between maize and teosinte. J Hered, 2007, 98: 183-187
[51]  32 Lu B R. The challenge of in situ conservation of crop wild relatives in the biotechnology era—A case study of wild rice species. In: Maxted N, Dulloo M E, Lord-Lloyd B V, et al, eds. Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces. Wallingford: CAB International, 2012. 211-217
[52]  33 Schierup M H, Christiansen F B. Inbreeding depression and outbreeding depression in plants. Heredity, 1996, 77: 461-468
[53]  43 Zhu Y Q, Ellstrand N C, Lu B R. Sequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus sh4 played a minor role in Asian rice domestication. Evol Ecol, 2012, 2: 2106-2113
[54]  44 Palaisa K, Morgante M, Tingey S, et al. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA, 2004, 101: 9885-9890
[55]  46 Rhymer J M, Simberloff D. Extinction by hybridization and introgression. Annu Rev Ecol Syst, 1996, 27: 83-109
[56]  47 Arnold M L, Bulger M R, Burke J M, et al. Natural hybridization: How low can you go and still be important? Ecology, 1999, 80: 371-381
[57]  50 James C. Global Status of Commercialized Biotech/GM Crops: 2012. ISAAA Brief 44-2012. New York: ISAAA, 2012
[58]  56 Lu B R. Transgene escape from GM crops and potential biosafety consequences: An environmental perspective. Coll Biosaf Rev, 2008, 4: 66-141
[59]  57 Kirk T K, Carlson J E, Ellstrand N, et al. Biological Confinement of Genetically Engineered Organisms. Washington: National Academies Press, 2004
[60]  58 Lu B R. Transgene containment by molecular means—is it possible and cost effective? Environ Biosafety Res, 2003, 2: 3-8
[61]  60 Jin Y, He T H, Lu B R. Fine scale genetic structure in wild soybean population (Glycine soja Sieb. et Zucc.) and the implication for conservation. New Phytol, 2003, 159: 513-519

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133