全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

群落水平上传粉生态学的研究进展

DOI: 10.1360/972013-378, PP. 449-458

Keywords: 植物与传粉者互作,传粉生态学,群落水平,进展

Full-Text   Cite this paper   Add to My Lib

Abstract:

同地开花的植物共享传粉者,传粉者通常在多种植物上觅食,这些事实激发人们在群落水平上开展传粉生态学研究.与以单种植物为对象的传粉研究相比,从群落水平研究植物与传粉者、植物与植物之间的互作,有利于阐明传粉者与植物间关系的演化、探讨传粉过程在群落构建中的作用.对植物与传粉者互利关系的研究,已经从访问网络的结构动态,深入到网络的构建机制和对群落植物繁殖的切实影响上.从群落水平研究传粉者对花部特征的选择,分析共存植物的系统发育关系,可为花部特征演化提供更有力的证据.植物与植物之间由传粉者介导的互作研究,已经由成对或者少数几种植物之间,发展为在群落内的多种植物之间进行.由于传粉者对植物雄性和雌性功能的影响不同,植物之间互作表现出不同规律.相关研究从传粉者效率、植物柱头的花粉干扰和传粉过程的花粉丢失等多角度研究传粉者对植物雄性和雌性功能的作用.传粉作为一项基本生态服务,受到了多种人类活动的显著影响,尤其是外来物种入侵、生境破碎化等因素的不利影响.群落水平的传粉生态学研究在我国已有开展,今后的研究有必要在不同时空尺度上进行多层次调查和实验性工作,才能深入研究植物与传粉者、植物与植物的互作模式,从更大尺度揭示群落的构建机制、种间关系和花部特征演化.

References

[1]  2 Kearns C, Inouye D, Waser N. Endangered mutualisms: The conservation of plant-pollinator interactions. Annu Rev Ecol Syst, 1998, 29: 83-112
[2]  6 Waser N M, Ollerton J. Plant-pollinator Interactions: From Specialization to Generalization. Chicago: University of Chicago Press, 2006
[3]  7 Dupont Y L, Padrón B, Olesen J M, et al. Spatio-temporal variation in the structure of pollination networks. Oikos, 2009, 118: 1261-1269
[4]  8 Vázquez D P, Blüthgen N, Cagnolo L, et al. Uniting pattern and process in plant-animal mutualistic networks: A review. Ann Bot, 2009, 103: 1445-1457
[5]  9 Schleuning M, Fründ J, Klein A M, et al. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr Biol, 2012, 22: 1925-1931
[6]  14 Santamaría L, Rodríguez-Gironés M A. Linkage rules for plant-pollinator networks: Trait complementarity or exploitation barriers? PLoS Biol, 2007, 5: e31
[7]  17 Olesen J M, Bascompte J, Dupont Y L, et al. Missing and forbidden links in mutualistic networks. Proc R Soc B Biol Sci, 2011, 278: 725-732
[8]  18 Aizen M A, Morales C L, Morales J M. Invasive mutualists erode native pollination webs. PLoS Biol, 2008, 6: e31
[9]  22 Stebbins G L. Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Ann Rev Ecol Syst, 1970, 1: 307-326
[10]  23 Ollerton J, Watts S. Phenotype space and floral typology: Towards an objective assessment of pollination syndromes. Det Norske Videnskaps-Akademi. I. Matematisk-Naturvidenskapelige Klasse, Skrifter, Ny Serie, 2000, 39: 149-159
[11]  24 Valdivia C E, Niemeyer H M. Do floral syndromes predict specialization in plant pollination systems? Assessment of diurnal and nocturnal pollination of Escallonia myrtoidea. New Zeal J Bot, 2006, 44: 135-141
[12]  25 Ramírez N. Floral specialization and pollination: A quantitative analysis and comparison of the Leppik and the Faegri and van der Pijl classification systems. Taxon, 2003, 52: 687-700
[13]  26 Armbruster W S, Gong Y B, Huang S Q. Are pollination “syndromes” predictive? Asian Dalechampia fit neotropical models. Am Nat, 2011, 178: 135-143
[14]  31 Gong Y B, Huang S Q. Floral symmetry: Pollinator-mediated stabilizing selection on flower size in bilateral species. Proc R Soc B-Biol Sci, 2009, 276: 4013-4020
[15]  36 Waser N M. Interspecific pollen transfer and competition between co-occurring plant species. Oecologia, 1978, 36: 223-236
[16]  37 Armbruster W S, Herzig A L. Partitioning and sharing of pollinators by four sympatric species of Dalechampia (Euphorbiaceae) in Panama. Ann Mo Bot Gard, 1984, 71: 1-16
[17]  38 Caruso C M. Competition for pollination influences selection on floral traits of Ipomopsis aggregata. Evolution, 2000, 54: 1546-1557
[18]  39 Brown B J, Mitchell R J. Competition for pollination: Effects of pollen of an invasive plant on seed set of a native congener. Oecologia, 2001, 129: 43-49
[19]  42 Ne'eman G, Jürgens A, Newstrom-Lloyd L, et al. A framework for comparing pollinator performance: Effectiveness and efficiency. Biol Rev, 2010, 85: 435-451
[20]  43 Alarcón R. Congruence between visitation and pollen-transport networks in a California plant-pollinator community. Oikos, 2010, 119: 35-44
[21]  45 Muchhala N, Thomson J D. Interspecific competition in pollination systems: Costs to male fitness via pollen misplacement. Funct Ecol, 2012, 26: 476-482
[22]  46 Morales C, Traveset A. Interspecific pollen transfer: Magnitude, prevalence and consequences for plant fitness. Crit Rev Plant Sci, 2008, 27: 221-238
[23]  49 Montgomery B R, Rathcke B J. Effects of floral restrictiveness and stigma size on heterospecific pollen receipt in a prairie community. Oecologia, 2012, 168: 449-458
[24]  50 Arceo-Gómez G, Ashman T L. Heterospecific pollen deposition: Does diversity alter the consequences? New Phytol, 2011, 192: 738-746
[25]  51 Fang Q, Huang S Q. A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology, 2013, 4: 1176-1185
[26]  56 Yang S, Ferrari M J, Shea K. Pollinator behavior mediates negative interactions between two congeneric invasive plant species. Am Nat, 2011, 177: 110-118
[27]  57 Lázaro A, Totland ?. Population dependence in the interactions with neighbors for pollination: A field experiment with Taraxacum officinale. Am J Bot, 2010, 97: 760-769
[28]  62 Campbell D R, Motten A F. The mechanism of competition for pollination between two forest herbs. Ecology, 1985, 66: 554-563
[29]  63 Muchhala N, Brown Z, Armbruster W S, et al. Competition drives specialization in pollination systems through costs to male fitness. Am Nat, 2010, 176: 732-743
[30]  64 García-Camacho R, Totland ?. Pollen limitation in the alpine: A meta-analysis. Arct Antarct Alp Res, 2009, 41: 103-111
[31]  65 Feldman T S, Morris W F, Wilson W G. When can two plant species facilitate each other's pollination? Oikos, 2004, 105: 197-207
[32]  68 Hegland S J, Grytnes J, Totland ?. The relative importance of positive and negative interactions for pollinator attraction in a plant community. Ecol Res, 2009, 24: 929-936
[33]  69 Larson D L, Royer R A, Royer M R. Insect visitation and pollen deposition in an invaded prairie plant community. Biol Conserv, 2006, 130: 148-159
[34]  70 Lopezaraiza-Mikel M, Hayes R B, Whalley M R, et al. The impact of an alien plant on a native plant-pollinator network: An experimental approach. Ecol Lett, 2008, 10: 539-550
[35]  73 Thijs K, Brys R, Verboven H, et al. The influence of an invasive plant species on the pollination success and reproductive output of three riparian plant species. Biol Invasions, 2012, 14: 355-365
[36]  76 Montero-Castano A, Vila M. Impact of landscape alteration and invasions on pollinators: A meta-analysis. J Ecol, 2012, 100: 884-893
[37]  77 Brosi B J, Briggs H M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc Natl Acad Sci USA, 2013, 110: 13044-13048
[38]  78 Garibaldi L A, Steffan-Dewenter I, Winfree R, et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 2013, 339: 1608-1611
[39]  87 Devoto M, Bailey S, Craze P, et al. Understanding and planning ecological restoration of plant-pollinator networks. Ecol Lett, 2012, 15: 319-328
[40]  88 Mayer C, Adler L, Armbruster S, et al. Pollination ecology in the 21st century: Key questions for future research. J Pollin Ecol, 2011, 3: 8-23
[41]  1 Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos, 2011, 120: 321-326
[42]  3 Dodd M, Silvertown J, Chase M. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution, 1999, 53: 732-744
[43]  4 Darwin C. On the Various Contrivances by which British and Foreign Orchids are Fertilised by Insects. London: John Murray, 1862
[44]  5 黄双全, 郭友好. 传粉生物学的研究进展. 科学通报, 2000, 45: 225-237
[45]  10 Memmott J, Waser N M, Price M. Tolerance of pollination network to species extinctions. Proc R Soc B Biol Sci, 2004, 271: 2605-2611
[46]  11 Kaiser-Bunbury C N, Muff S, Memmott J, et al. The robustness of pollination networks to the loss of species and interactions: A quantitative approach incorporating pollinator behaviour. Ecol Lett, 2010, 13: 442-452
[47]  12 Vázquez D P, Lomáscolo S B, Maldonado B, et al. The strength of plant-pollinator interactions. Ecology, 2012, 93: 719-725
[48]  13 Vázquez D P, Aizen M A. Asymmetric specialization: A pervasive feature of plant-pollinator interaction. Ecology, 2004, 85: 1251-1257
[49]  15 Stang M, Klinkhamer P G L, Waser N M, et al. Size-specific interaction patterns and size matching in a plant-pollinator interaction web. Ann Bot, 2009, 103: 1459-1469
[50]  16 Jordano P, Bascompte J, Olesen J M. The ecological consequences of complex topology and nested structure in pollination webs. In: Waser N M, Ollerton J, eds. Plant-Pollinator Interactions: From Specialization to Generalization. Chicago: The University of Chicago Press, 2006
[51]  19 Hegland S J, Nielsen A, Lázaro A, et al. How does climate warming affect plant-pollinator interactions? Ecol Lett, 2009, 12: 184-195
[52]  20 Albrecht M, Riesen M, Schmid B. Plant-pollinator network assembly along the chronosequence of a glacier foreland. Oikos, 2010, 119: 1610-1624
[53]  21 Aizen M A, Sabatino M, Tylianakis J M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science, 2012, 335: 1486-1489
[54]  27 Ollerton J, Alarcón R, Waser N M, et al. A global test of the pollination syndrome hypothesis. Ann Bot, 2009, 103: 1471-1480
[55]  28 Martén-Rodríguez S, Fenster C B, Agnarsson I, et al. Evolutionary breakdown of pollination specialization in a Caribbean plant radiation. New Phytol, 2010, 188: 403-417
[56]  29 Lázaro A, Hegland S J, Totland ?. The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities. Oecologia, 2008, 157: 249-257
[57]  30 McEwen J R, Vamosi J C. Floral colour versus phylogeny in structuring subalpine flowering communities. Proc R Soc B-Biol Sci, 2010, 277: 2957-2965
[58]  32 Mao Y Y, Huang S Q. Pollen resistance to water in 80 angiosperm species: Flower structures protect rain-susceptible pollen. New Phytol, 2009, 183: 892-899
[59]  33 Eaton D A R, Fenster C B, Hereford J, et al. Floral diversity and community structure in Pedicularis (Orobanchaceae). Ecology, 2012, 93: S182-S194
[60]  34 Adler L S, Seifert M G, Wink M, et al. Reliance on pollinators predicts defensive chemistry across tobacco species. Ecol Lett, 2012, 15: 1140-1148
[61]  35 Rathcke B. Competition and facilitation among plants for pollination. In: Real L, ed. Pollination Biology. New York: Academic Press, 1983
[62]  40 Bosch J, Gonzalez A M M, Rodrigo A, et al. Plant-pollinator networks: Adding the pollinator's perspective. Ecol Lett, 2009, 12: 409-419
[63]  41 Wilcock C, Neiland R. Pollination failure in plants: Why it happens and when it matters. Trends Plant Sci, 2002, 7: 270-277
[64]  44 Waser N M. Competition for pollination and floral character differences among sympatric plant species: A review of evidence. In: Jones C E, Little R J, eds. Handbook of Experimental Pollination Biology. New York: Van Nostrand Reinhold, 1983
[65]  47 McLernon S M, Murphy S D, Aarssen L W. Heterospecific pollen transfer between sympatric species in a midsuccessional old-field community. Am J Bot, 1996, 83: 1168-1174
[66]  48 Waites A R, ?gren J. Pollinator visitation, stigmatic pollen loads and among—population variation in seed set in Lythrum salicaria. J Ecol, 2004, 92: 512-526
[67]  52 Kandori I, Hirao T, Matsunaga S, et al. An invasive dandelion unilaterally reduces the reproduction of a native congener through competition for pollination. Oecologia, 2009, 159: 559-569
[68]  53 Mitchell R J, Flanagan R J, Brown B J, et al. New frontiers in competition for pollination. Ann Bot, 2009, 103: 1403-1413
[69]  54 Flanagan R J, Mitchell R J, Karron J D. Increased relative abundance of an invasive competitor for pollination, Lythrum salicaria, reduces seed number in Mimulus ringens. Oecologia, 2010, 164: 445-454
[70]  55 Flanagan R J, Mitchell R J, Karron J D. Effects of multiple competitors for pollination on bumblebee foraging patterns and Mimulus ringens reproductive success. Oikos, 2011, 120: 200-207
[71]  58 Holsinger K E, Thomson J D. Pollen discounting in Erythronium grandiflorum: Mass-action estimates from pollen transfer dynamics. Am Nat, 1994, 144: 799-812
[72]  59 Johnson S D, Neal P R, Harder L D. Pollen fates and the limits on male reproductive success in an orchid population. Biol J Linnean Soc, 2005, 86: 175-190
[73]  60 Murcia C, Feinsinger P. Interspecific pollen loss by hummingbirds visiting flower mixtures: Effects of floral architecture. Ecology, 1996, 77: 550-560
[74]  61 Flanagan R J, Mitchell R J, Knutowski D, et al. Interspecific pollinator movements reduce pollen deposition and seed production in Mimulus ringens (Phrymaceae). Am J Bot, 2009, 96: 809-815
[75]  66 Moeller D A. Facilitative interactions among plants via shared pollinators. Ecology, 2004, 85: 3289-3301
[76]  67 Ghazoul J. Floral diversity and the facilitation of pollination. J Ecol, 2006, 94: 295-304
[77]  71 Vilà M, Bartomeus I, Dietzsch A C, et al. Invasive plant integration into native plant-pollinator networks across Europe. Proc R Soc B-Biol Sci, 2009, 276: 3887-3893
[78]  72 Da Silva E M, King V M, Russell-Mercier J L, et al. Evidence for pollen limitation of a native plant in invaded communities. Oecologia, 2012, 172: 469-476
[79]  74 Dauber J, Biesmeijer J, Gabriel D, et al. Effects of patch size and density on flower visitation and seed set of wild plants: A pan-European approach. J Ecol, 2010, 98: 188-196
[80]  75 Garibaldi L A, Steffan-Dewenter I, Kremen C, et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett, 2011, 14: 1062-1072
[81]  79 黄双全. 植物与传粉者相互作用的研究及其意义. 生物多样性, 2007, 15: 569-575
[82]  80 方强, 黄双全. 传粉网络的研究进展: 网络的结构和动态. 生物多样性, 2012, 20: 300-307
[83]  81 Gong Y B, Huang S Q. Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits. Oecologia, 2011, 166: 671-680
[84]  82 Fang Q, Huang S Q. Relative stability of core groups in pollination networks in a biodiversity hotspot over four years. PLoS One, 2012, 7: e32663
[85]  83 Peng D L, Zhang Z Q, Xu B, et al. Patterns of flower morphology and sexual systems in the subnival belt of the Hengduan Mountains, SW China. Alpine Bot, 2012, 122: 65-73
[86]  84 Biesmeijer J C, Roberts S P M, Reemer M, et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 2006, 313: 351-354
[87]  85 Holzschuh A, Dormann C F, Tscharntke T, et al. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proc R Soc B Biol Sci, 2011, 278: 3444-3451
[88]  86 Williams N M. Restoration of nontarget species: Bee communities and pollination function in riparian forests. Restor Ecol, 2011, 19: 450-459
[89]  89 Petanidou T, Kallimanis A S, Tzanopoulos J, et al. Long-term observation of a pollination network: Fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol Lett, 2008, 11: 564-575

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133