1 Fasth C, Fuhrer A, Samuelson L, et al. Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. Phys Rev Lett, 2007, 98: 266801
[2]
2 Nilsson H A, Caroff P, Thelander C, et al. Giant, level-dependent g factors in InSb nanowire quantum dots. Nano Lett, 2009, 9: 3151-3156
[3]
3 Romeo L, Roddaro S, Pitanti A, et al. Electrostatic spin control in InAs/InP nanowire quantum dots. Nano Lett, 2012, 12: 4490-4494
[4]
4 Hochbaum A I, Fan R, He R R, et al. Controlled growth of Si nanowire arrays for device integration. Nano Lett, 2005, 5: 457-460
[5]
5 Huang Y, Lieber C M. Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires. Pure Appl Chem, 2004, 76: 2051-2068
[6]
6 Li Y, Qian F, Xiang J, et al. Nanowire electronic and optoelectronic devices. Mater Today, 2006, 9: 18-27
[7]
7 Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms. Nature, 1998, 395: 780-783
[8]
19 Zhang D, Wang R, Wen M, et al. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc, 2012, 134: 14283-14286
[9]
20 Hertl W, Hair M L. Reaction of hexamethyldisilazane with silica. J Phys Chem US, 1971, 75: 2181-2185
[10]
21 Chan H M, Fung K M, Li W J. Rapid assembly of carbon nanotubes for nanosensing by dielectrophoretic force. Nanotechnology, 2004, 15: S672-S677
[11]
22 Li J Q, Zhang Q, Peng N, et al. Manipulation of carbon nanotubes using AC dielectrophoresis. Appl Phys Lett, 2005, 86: 153116
[12]
8 Smogunov A, Dal Corso A, Delin A, et al. Colossal magnetic anisotropy of monatomic free and deposited platinum nanowires. Nat Nanotechnol, 2008, 3: 22-25
[13]
9 Sokolov A, Zhang C, Tsymbal E Y, et al. Quantized magnetoresistance in atomic-size contacts. Nat Nanotechnol, 2007, 2: 171-175
[14]
10 Weber B, Mahapatra S, Ryu H, et al. Ohm's law survives to the atomic scale. Science, 2012, 335: 64-67
[15]
11 Liu X M, Yang X B, Wei Y G. Yielding behavior of copper nanowire in the presence of vacancies. Sci China Phys Mech Astron, 2012, 55: 1010-1017
[16]
12 Yang Z Y, Jiao F F, Lu Z X, et al. Coupling effects of stress and ion irradiation on the mechanical behaviors of copper nanowires. Sci China Phys Mech Astron, 2013, 56: 498-505
[17]
13 Zhu Y, Espinosa H D. An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci USA, 2005, 102: 14503-14508
[18]
14 Morgan H, Hughes M P, Green N G. Separation of submicron bioparticles by dielectrophoresis. Biophys J, 1999, 77: 516-525
[19]
15 Liu Y L, Chung J H, Liu W K, et al. Dielectrophoretic assembly of nanowires. J Phys Chem B, 2006, 110: 14098-14106
17 Vijayaraghavan A, Blatt S, Weissenberger D, et al. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett, 2007, 7: 1556-1560
[22]
18 Hermanson K D, Lumsdon S O, Williams J P, et al. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science, 2001, 294: 1082-1086