全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

单根铜纳米线在超高悬空微动电极上的微滴定介电泳装配研究

DOI: 10.1360/csb2014-59-7-623, PP. 623-629

Keywords: 单根纳米线装配,微滴介电泳,超高拉伸电极,动态拉伸特性,原子链

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究单纳米线拉伸动态特性及原子链拉伸的制造,掌握其在拉伸状态下的动态特性变化和单原子链状态下的特殊性质以向原子器件制造方向发展,是目前纳米科学的前沿研究课题之一.但目前没有一套有效的方案来实现将单根纳米线置于可拉伸的微动机构上进行拉伸,制约了该方向的发展.本文借助微电子机械系统(MEMS)技术制造的纳米线拉伸特殊微动机构芯片进行研究,并针对特殊微动芯片悬空电极极度超高且亲水性好,而无法依靠常规介电泳工艺实现纳米线装配的特殊难题,使用了六甲基二硅氮烷进行了疏水处理的方式解决.同时研制出了特殊的微滴定介电泳实验平台与技术工艺,实现单根纳米线在极超高微电极上的有效精确装配,为最终实现纳米线的拉伸及原子链拉伸制造研究迈出最关键的一步.为了指导微滴定介电泳装配单根纳米线的实验,利用有限元方法对微滴定介电泳进行了仿真计算与分析.

References

[1]  1 Fasth C, Fuhrer A, Samuelson L, et al. Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. Phys Rev Lett, 2007, 98: 266801
[2]  2 Nilsson H A, Caroff P, Thelander C, et al. Giant, level-dependent g factors in InSb nanowire quantum dots. Nano Lett, 2009, 9: 3151-3156
[3]  3 Romeo L, Roddaro S, Pitanti A, et al. Electrostatic spin control in InAs/InP nanowire quantum dots. Nano Lett, 2012, 12: 4490-4494
[4]  4 Hochbaum A I, Fan R, He R R, et al. Controlled growth of Si nanowire arrays for device integration. Nano Lett, 2005, 5: 457-460
[5]  5 Huang Y, Lieber C M. Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires. Pure Appl Chem, 2004, 76: 2051-2068
[6]  6 Li Y, Qian F, Xiang J, et al. Nanowire electronic and optoelectronic devices. Mater Today, 2006, 9: 18-27
[7]  7 Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms. Nature, 1998, 395: 780-783
[8]  19 Zhang D, Wang R, Wen M, et al. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc, 2012, 134: 14283-14286
[9]  20 Hertl W, Hair M L. Reaction of hexamethyldisilazane with silica. J Phys Chem US, 1971, 75: 2181-2185
[10]  21 Chan H M, Fung K M, Li W J. Rapid assembly of carbon nanotubes for nanosensing by dielectrophoretic force. Nanotechnology, 2004, 15: S672-S677
[11]  22 Li J Q, Zhang Q, Peng N, et al. Manipulation of carbon nanotubes using AC dielectrophoresis. Appl Phys Lett, 2005, 86: 153116
[12]  8 Smogunov A, Dal Corso A, Delin A, et al. Colossal magnetic anisotropy of monatomic free and deposited platinum nanowires. Nat Nanotechnol, 2008, 3: 22-25
[13]  9 Sokolov A, Zhang C, Tsymbal E Y, et al. Quantized magnetoresistance in atomic-size contacts. Nat Nanotechnol, 2007, 2: 171-175
[14]  10 Weber B, Mahapatra S, Ryu H, et al. Ohm's law survives to the atomic scale. Science, 2012, 335: 64-67
[15]  11 Liu X M, Yang X B, Wei Y G. Yielding behavior of copper nanowire in the presence of vacancies. Sci China Phys Mech Astron, 2012, 55: 1010-1017
[16]  12 Yang Z Y, Jiao F F, Lu Z X, et al. Coupling effects of stress and ion irradiation on the mechanical behaviors of copper nanowires. Sci China Phys Mech Astron, 2013, 56: 498-505
[17]  13 Zhu Y, Espinosa H D. An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci USA, 2005, 102: 14503-14508
[18]  14 Morgan H, Hughes M P, Green N G. Separation of submicron bioparticles by dielectrophoresis. Biophys J, 1999, 77: 516-525
[19]  15 Liu Y L, Chung J H, Liu W K, et al. Dielectrophoretic assembly of nanowires. J Phys Chem B, 2006, 110: 14098-14106
[20]  16 田孝军, 王越超, 于海波, 等. SWCNT场效应晶体管的介电泳装配与制造. 科学通报, 2009, 54: 662-667
[21]  17 Vijayaraghavan A, Blatt S, Weissenberger D, et al. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett, 2007, 7: 1556-1560
[22]  18 Hermanson K D, Lumsdon S O, Williams J P, et al. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science, 2001, 294: 1082-1086

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133