1 Staudenmann D, Roeleveld K, Stegeman D F, et al. Methodological aspects of SEMG recordings for force estimation—A tutorial and review. J Electromyopr Kinesiol, 2010, 20: 375-387
[2]
2 Bigland-Ritchie B, Donovan E F, Roussos C S. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts. J Appl Physiol, 1981, 51: 1300-1305
[3]
5 Güler N F, Ko?er S. Classification of EMG signals using PCA and FFT. J Med Syst, 2005, 29: 241-250
[4]
6 Talebinejad M, Chan A D C, Miri A, et al. Fractal analysis of surface electromyography signals: A novel power spectrum-based method. J Electromyopr Kinesiol, 2009, 19: 840-850
[5]
9 Gabor D. Theory of communication. J Inst Electr Eng, 1946, 93: 429-457
[6]
12 Michele G D, Sello S, Garboncini M C, et al. Cross-correlation time-frequency analysis for multiple EMG signals in Parkinson's disease: A wavelet approach. Med Eng Phys, 2003, 25: 361-369
16 Holobar A, Zazula D. Multi-channel blind source separation using convolution kernel compensation. IEEE Trans signal process, 2007, 8: 4487-4496
[9]
17 Azzerboni B, Finocchio G, Ipsale M, et al. A new approach to detection of muscle activation by independent component analysis and wavelet transform. Comput Sci, 2002, 2486: 109-116
21 Guo Z, Fan Y J, Zhang J J, et al. A new 4M model-based human-machine interface for lower extremity exoskeleton robot. In: The 5th International Conference on Intelligent Robotics and Applications, 2012, October 3-5, Montreal, Canada. Heidelberg: Springer, 2012. 123-130
[12]
22 Gabriel D A, Christie A, Inglis J G, et al. Experimental and modeling investigation of surface EMG spike analysis. Med Eng Phys, 2011, 33: 427-437
[13]
23 Merletti R, Conte L L, Avignone E, et al. Modeling of surface myoelectric signals. Part I: Model implementation. IEEE Trans Biomed Eng, 1999, 46: 810-820
[14]
26 McComas A J, Mrozek K, Gardner-Medwin D, et al. Electrical properties of muscle fibre membranes in man. J Neurol Neurosurg Phychiat, 1968, 31: 434-440
32 Zhou S, Lawson D L, Morrison W E. Electromechanical delay in isometric muscle contractions evoked by voluntary, reflex and electrical stimulation. Eur J Appl Physiol, 1995, 70: 138-145
[17]
35 Lowery M M, Stoykov N S, Dewald J P A, et al. Volume conduction in an anatomically based surface EMG model. IEEE Trans Biomed Eng, 2004, 51: 2138-2147
[18]
3 Mannion A F, Connolly B, Wood K, et al. The use of surface EMG power spectral analysis in the evaluation of back muscle function. J Rehabil Res Dev, 1997, 34: 427-439
[19]
4 Komi P V, Tesch P. EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man. Eur J Appl Physiol Occup Physiol, 1979, 42: 41-50
[20]
7 Christie A, Inglis G, Kamen G. Relationships between surface EMG variables and motor unit firing rates. Eur J Appl Physiol, 2009, 107: 177-185
[21]
8 Qi L, Wakeling J M, Green A, et al. Spectral properties of electromyographic and mechanomyographic signals during isometric ramp and step contractions in biceps brachii. J Electromyopr Kinesiol, 2011, 21: 128-135
[22]
10 Claasen T, Mecklenbrauker W. The Wigner distribution—A tool for time-frequency analysis. Part Ⅰ: continuous-time signals. Phylips J Res, 1980, 35: 217-250
[23]
11 Wang G, Wang Z Z, Chen W T, et al. Classification of surface EMG signals using optimal wavelet packet method based on Davies-Bouldin criterion. Med Bio Eng Comput, 2006, 44: 865-872
[24]
14 Kukolj D, Levi E. Identification of complex systems based on neural and Takagi-Sugeno fuzzy model. IEEE Trans Syst Man Cybern B, 2003, 34: 272-282
[25]
15 Vineet G, Srikanth S, Narender P R. Fractal analysis of surface EMG signals from the biceps. Int J Med Inform, 1997, 45: 185-192
[26]
18 Nair S S, French R M, Laroche D, et al. The application of machine learning algorithms to the analysis of electromyographic patterns from arthritic patients. IEEE Trans Neural Syst Rehabil Eng, 2010, 18: 174-184
[27]
19 Levi J H, Erik J S, Kevin B E, et al. Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis. IEEE Trans Neural Syst Rehabil Eng, 2010, 18: 49-57
[28]
24 Day S J, Hulliger M. Experimental simulation of cat electromyogram: Evidence for algebraic summation of motor-unit action-potential trains. J Neurophysiol, 2001, 86: 2144-2158
28 Kesar T, Chou L W, Binder-Macleod S A. Effects of stimulation frequency versus pulse duration modulation on muscle fatigue. J Electromyopr Kinesiol, 2008, 18: 662-671
[31]
29 Yin Y H, Fan Y J, Xu L D. EMG & EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton. IEEE Trans Inf Tech Biomed, 2012, 16: 542-549
[32]
30 Yin Y H, Fan Y J, Guo Z. sEMG-based neuro-fuzzy controller for a parallel ankle exoskeleton with proprioception. Int J Robot Autom, 2011, 26: 450-460
[33]
31 Fan Y J, Yin Y H. Differentiated time-frequency characteristics based real-time human-machine interface for lower extremity rehabilitation exoskeleton robot. In: The 5th International Conference on Intelligent Robotics and Applications, 2012, October 3-5, Montreal, Canada. Heidelberg: Springer, 2012. 31-40
[34]
33 Rasmussen J, Damsgaard M, Voigt M. Muscle recruitment by the min/max criterion-a comparative numerical study. J Biomech, 2001, 34: 409-415
36 Ren Q, Zhao Y P, Yue J C, et al. Biological application of multi-component nanowires in hybrid devices powered by F1-ATPase motors. Biomed Microdev, 2006, 8: 201-208