全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

高电压正极材料在全固态锂离子电池中的应用展望

DOI: 10.1360/csb2014-59-7-537, PP. 537-550

Keywords: 全固态锂离子电池,高电压LiNi0.5Mn1.5O4,三元复合材料,富锂锰基材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

全固态锂离子电池是以固态电解质取代液体电解质的锂离子电池、它有望从根本上解决电池的安全性问题,如能实现其大容量化和长寿命,将在电动汽车和规模化储能领域具有非常广阔的应用前景.由于固态电解质比液态电解质有更宽的工作电位窗口,因此可以在全固态电池中使用具有较高电压平台的正极材料,通过提升电池的工作电压以获得高能量密度,从而实现大容量化.锂离子电池正极材料尖晶石LiNi0.5Mn1.5O4,三元层状材料和富锂锰基正极材料都具有较高的电压平台,是全固态锂离子电池可选用的理想正极材料.本文介绍了尖晶石LiNi0.5Mn1.5O4,三元层状材料和富锂锰基正极材料的结构和性能特点,重点阐述了与改善材料的电导率和界面性质相关的的研究,改善其作为全固态锂离子电池正极材料与固态电解质的匹配性能,从而全面提升全固态电池的性能.总结了3种材料在全固态锂离子电池中应用存在的问题,提出未来的技术攻关方向,并对其在全固态电池中的应用前景进行了展望.

References

[1]  1 Takada K. Progress and perspective of solid-state lithium ion batteries. Acta Mater, 2013, 61: 759-770
[2]  2 Hooper A, North J M. The fabrication and performance of all solid-state polymer-based rechargeable lithium cells. Solid State Ionics, 1983, 9-10: 1161-1166
[3]  5 胡仁宗, 刘辉, 曾美琴, 等. 锂离子电池Sn基薄膜负极材料的研究进展. 科学通报, 2012, 57: 2587-2598
[4]  6 Kazunori T. Progress and prospective of solid-state lithium batteries. Acta Mater, 2013, 61: 759-770
[5]  7 Taracson J M, Armand M. Issues and challenges facing lithium ion batteries. Nature, 2001, 414: 359-367
[6]  8 杨勇, 龚正良, 吴晓彪, 等. 锂离子电池若干正极材料体系的研究进展. 科学通报, 2012, 57: 2570-2586
[7]  9 夏兰, 朱利敏, 张海燕, 等. 一种可为锂二次电池提供过热保护的正温度敏感系数电极. 科学通报, 2012, 57: 2632-2636
[8]  10 Chiu K F. Lithium cobalt oxide thin films deposited at low temperature by ionized magnetron sputtering. Thin Solid Films, 2007, 515: 4614-4618
[9]  11 Ramana C V, Zaghib K, Julien C M. Synthesis, structual and electrochemical propeties of pulsed laser deposited Li(Ni, Co)O2 films. J Power Sources, 2006, 159: 1310-1315
[10]  12 Yoon W S, Chung K Y, Nam K W, et al. Characterization of LiMn2O4-coated LiCoO2 film electrode prepared by electrostatic spray deposition. J Power Sources, 2006, 163: 207-210
[11]  13 杜柯, 胡国荣. 锂离子电池正极材料富锂锰基固溶体的研究进展. 科学通报, 2012, 57: 794-804
[12]  17 Julien C M, Gendron F, Arndouni A, et al. Lattice vibrations of materials for lithium rechargeable batteries. VI: Ordered spinels. Mater Sci Eng B, 2006, 130: 41-48
[13]  18 Duncan H, Abu-Lebdeh Y, Davidson I J. Study of the cathode-electrolyte interface of LiNiMnO synthesized by sol-gel method for Li-ion batteries. J Electrochem Soc, 2010, 157: A528-A535
[14]  20 Kim J H, Myung S T, Sun Y K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim Acta, 2004, 49: 219-227
[15]  21 卢华权, 吴锋, 苏岳锋, 等. 5 V锂离子电池正极材料LiNi0.5Mn1.5O4的合成与Li+在材料中的扩散性能. 高等学校化学学报, 2011, 32: 946-951
[16]  22 Liu J, Liu W, Ji S, et al. Electrospun spinel LiNi0.5Mn1.5O4 hierarchical nanofibers as 5 V cathode materials for lithium-ion batteries. ChemPlusChem, 2013, 78: 636-641
[17]  26 Liu J, Manthiram A. Understanding the improved electroperformances of Fe-substituted 5 V spinel cathode. J Phys Chem C, 2009, 113: 15073-15079
[18]  33 Huang Y Y, Zeng X L, Zhou C, et al. Electrochemical performance and thermal stability of GaF3-coated LiNi0.5Mn1.5O4 as 5 V cathode materials for lithium ion batteries. J Mater Sci, 2013, 48: 625-635
[19]  34 Fan Y K, Wang J M, Tang Z, et al. Effect s of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochim Acta, 2007, 52: 3870-3875
[20]  37 Noguchi T, Yamazaki I, Numata T, et al. Effect of Bi oxide surface treatment on 5 V spinel LiNi0.5Mn1.5-xTixO4. J Power Sources, 2007, 174: 359-365
[21]  42 Liu Z L, Yu A S, Lee J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries. J Power Sources, 1999, 81-82: 416-419
[22]  43 Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2(0﹤x﹤1): A new cathode material for batteries of high energy density. Mater Res Bull, 1980, 15: 783-789
[23]  44 Chen Z H, Dahn J R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim Acta, 2004, 49: 1079-1090
[24]  45 Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3over-BAR-m) for 4 volt secondary lithium cells. J Electrochem Soc, 1993, 140: 1862-1870
[25]  46 Armstrong A R, Paterson A J, Dupre N, et al. Structural evolution of layered LixMnyO2: Combined neutron, NMR, and electrochemical study. Chem Mater, 2007, 19: 1016-1023
[26]  55 Li J, Zhang Q, Liu C, et al. ZrO2 coating of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. Ionics, 2009, 15: 493-496
[27]  56 Hu S K, Cheng G H, Cheng M Y, et al. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Power Sources, 2009, 188: 564-569
[28]  57 Wu F, Wang M, Su Y F, et al. Surface of LiNi1/3Co1/3Mn1/3O2 modified by CeO2-coating. Electrochim Acta, 2009: 6803-6807
[29]  58 Cho J, Kim T J, Kim J, et al. Synthesis, thermal and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell. J Electrochem Soc, 2004, 151: A1899-A1904
[30]  59 Jiang S B, Kang S H, Amine K, et al. Synthesis and improved electrochemical performance of Al(OH)3-coated Li[Ni1/3Mn1/3Co1/O2 cathode materials at elevated temperature. Electrochim Acta, 2005, 50: 4168-4173
[31]  60 Shi S J, Tu J P, Tang Y Y, et al. Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources, 2013, 225: 338-346
[32]  64 Zhang W, Liu H X, Hu C, et al. Preparation of layered oxide Li(Ni1/3Co1/3Mn1/3)O2 via the sol-gel process. Rare Mater, 2008, 27: 158-164
[33]  65 Cho Y, Oh P, Cho J. A new type of protective surface layer for high-capacity Ni-based cathode materials: Nano-scaled pillaring layer. Nano Lett, 2013, 13: 1145-1152
[34]  66 Sun Y K, Kim D H, Jung H G, et al. High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.O2 cathode material for lithium-ion batteries. Electrochim Acta, 2010, 55: 8621-8627
[35]  67 Sun Y K, Chen Z H, Noh H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater, 2012, 11: 942-947
[36]  68 Hirokazu K, Akitoshi H, Kiyoharu T, et al. Electrochemical performance of all-solid-state lithium secondary batteries with Li-Ni-Co-Mn oxide positive electrodes. Electrochim Acta, 2010, 55: 8821-8828
[37]  69 Lu Z H, Macneil D D, Dahn J R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries. Electrochem Solid State Lett, 2001, 4: A191-A194
[38]  70 Mori D, Sakaebe H, Shikano M, et al. Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li2MnO3 as a novel cathode material. J Power Sources, 2011, 196: 6934-6938
[39]  79 Kim J H, Park C W, Sun Y K. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/O2 cathode materials. Solid State Ionics, 2003, 164: 43-49
[40]  82 Wu Y, Manthiram A. Effect of surface modifications on the layered solid solution cathodes(1-z)Li[Li1/3Mn2/O2-(z)Li[Mn0.5-yNi0.5-yCo2y]O2. Solid State Ionics, 2009, 180: 50-56
[41]  83 Park M S, Lee J W, Choi W, et al. On the surface modifications of high-voltage oxide cathodes for lithium-ion batteries: New insight and significant safety improvement. J Mater Chem, 2010, 20: 7208-7213
[42]  84 Wu F, Li N, Su Y F, et al. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater, 2013, 25: 3722-3726
[43]  87 Liu X Y, Liu J L, Huang T, et al. CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim Acta, 2013, 109: 52-58
[44]  97 Amine K, Chen Z H, Kang S H. Impacts of fluorine on the electrochemical properties of Li[Ni0.5Mn0.O2 and Li[Li0.2Ni0.15Co0.1Mn0.55]O2. J Fluorine Chem, 2007, 128: 263-268
[45]  98 He W, Yuan D D, Qian J F, et al. Enhanced high-rate capacity and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.O2 cathode material. J Mater Chem A, 2013, 1: 11397-11403
[46]  99 Gu M, Belharouak I, Zheng J M, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano, 2013, 7: 760-767
[47]  3 Fabre S D, Guy-Bouyssou D, Bouillon P, et al. Charge/discharge simulation of an all-solid-state thin film battery using a one-dimensional model. J Electrochem Soc, 2012, 159: A104-A115
[48]  4 Schwenzel J, Thangadurai V, Weppner W. Developments of high-voltage all-solid-state thin-film lithium ion batteries. J Power Sources, 2006, 154: 232-238
[49]  14 Yi T F, Xie Y, Zhu Y R, et al. Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery. J Power Sources, 2013, 222: 448-454
[50]  15 包丽颖, 高伟, 苏岳锋, 等. 锂离子电池硅酸盐正极材料的研究进展. 科学通报, 2012, 57: 783-792
[51]  16 Kim J H, Myung S T, Yoon C S, et al. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd-3m and P4332. Chem Mater, 2004, 16: 906-914
[52]  19 Idemoto Y, Sekin H, Ui K, et al. Crystal structural change during charge-discharge process of LiNi0.5Mn1.5O4 as cathode material for 5 V class lithium secondary battery. Solid State Ionics, 2005, 176: 299-306
[53]  23 Zhang X, Cheng F, Yang J, et al. LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett, 2013, 13: 2822-2825
[54]  24 Park S B, Eom W S, Cho W I, et al. Electrochemical properties of LiNi0.5Mn1.5O4 cathode after Cr doping. J Power Sources, 2009, 159: 679-684
[55]  25 Alcantara R, Jaraba M, Lavela P, et al. Synergistic effects of double substitution in LiNi0.5-yFeyMn1.5O4. J Electrochem Soc, 2005, 152: A13-A18
[56]  27 Oh S W, Myung S T, Kang H B, et al. Effects of Co doping on Li[Ni0.5CoxMn1.5-x]O4 spinel materials for 5 V lithium secondary batteries via co-precipitation. J Power Sources, 2009, 189: 752-756
[57]  28 Locati C, Lafont U, Simonin L, et al. Mg-doped LiNi0.5Mn1.5O4 spinel for cathode materials. J Power Sources, 2007, 174: 847-851
[58]  29 Kim J H, Myung S T, Yoon C S, et al. Effect of Ti substitution for Mn on the structure of LiNi0.5Mn1.5-xTixO4 and their electrochemical properties as lithium insertion material. J Electrochem Soc, 2004, 151: A1911-A1918
[59]  30 Wang H, Xia H, Lai M O, et al. Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping. Electrochem Commun, 2009, 11: 1539-1542
[60]  31 Oh S W, Park S H, Kim J H, et al. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution. J Power Sources, 2006, 157: 464-470
[61]  32 Sun Y K, Oh S W, Yoon C S, et al. Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4-xSx spinel material in 3 V region. J Power Sources, 2006, 161: 19-26
[62]  35 Alcantara R, Jaraba M, Lavela P, et al. X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes. J Electroanal Chem, 2004, 566: 187-192
[63]  36 Wu H M, Belharouak I, Abouimrane A, et al. Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. J Power Sources, 2010, 195: 2909-2913
[64]  38 Kang H B, Myung S T, Amine K, et al. Improved electrochemical properties of BiOF-coated 5 V spinel Li[Ni0.5Mn1.O4 for rechargeable lithium batteries. J Power Sources, 2010, 195: 2023-2028
[65]  39 Zhu Y R, Yi T F, Zhu R S, et al. Increased cycling stability of Li4Ti5O12-coated LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries. Ceram Int, 2013, 39: 3087-3094
[66]  40 Du G, NuLi Y, Yang J, et al. Fluorine-doped LiNi0.5Mn1.5O4 for 5 V cathode materials of lithium-ion battery. Mater Res Bull, 2008, 43: 3607-3613
[67]  41 Keigo H, Kazuomi Y, Masashi K, et al. Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol-gel process and its application of all-solid-state lithium ion batteries using Li1+xAlxTi2-x(PO4)3 solid electrolyte. Solid State Ion, 2012, 209-210: 30-35
[68]  47 Koyama Y, Tanaka I, Adachi H, et al. Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/O2 (0≤x≤1). J Power Sources, 2003, 119-121: 644-648
[69]  48 包丽颖, 车辉泉, 胡道中, 等. 改善锂离子电池正极材料LiNil/3Col/3Mnl/3O2性能的方法. 科学通报, 2013, 58: 1809-1816
[70]  49 Kim G H, Myung S T, Kim H S, et al. Synthesis of spherical Li[Ni1/3-zCo1/3-zMn1/3-zMgz]O2 as positive electrode material for lithium-ion battery. Electrochim Acta, 2006, 51: 2447-2453
[71]  50 Wu F, Wang M, Su Y F, et al. A novel layered material of LiNi0.32Mn0.33Co0.33Al0.01O2 for advanced lithium-ion batteries. J Power Sources, 2010, 195: 2900-2904
[72]  51 Chen Y H, Chen R Z, Tang Z Y, et al. Synthesis and characterization of Zn-doped LiCo0.3Ni0.4-xMn0.3ZnxO2 cathode materials for lithium-ion batteries. J Alloys Compd, 2009, 476: 539-542
[73]  52 Wang L Q, Jiao L F, Yuan H T, et al. Synthesis and electrochemical properties of Mo-doped Li[Ni1/3Mn1/3Co1/O2 cathode material for Li-ion battery. J Power Sources, 2006, 162: 1367-1372
[74]  53 Zhang Y J, Xia S B, Zhang Y N, et al. Ce-doped LiNi1/3Co(1/3-x/3)Mn1/3Cex/3O2 cathode materials for use in lithium ion batteries. Chin Sci Bull, 2012, 57: 4181-4187
[75]  54 Riley L A, Van Ana S, Cavanagh A S, et al. Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Co1/3Mn1/3 O2as layered cathode material. J Power Sources, 2011, 196: 3317-3324
[76]  61 Liu T, Zhao S X, Wang K Z, et al. CuO-coated Li[Ni0.5Co0.2Mn0.O2 cathode material with improved cycling performance at high rates. Electrochim Acta, 2012, 85: 605-611
[77]  62 Shaju K M, Rao G V S, Chowdari B V R, et al. Influnce of Li-ion Kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2. Electrochim Acta, 2002, 48: 145-151
[78]  63 Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiNi1/3Co1/3Mn1/3O2 for advanced lithium ion batteries. J Power Sources, 2003, 119-121: 171-174
[79]  71 吴锋, 李宁, 安然, 等. 基于Li2MnO3的富锂类高比容量锂离子电池正极材料的研究进展. 北京理工大学学报, 2012, 32: 1-11
[80]  72 Armstrong A R, Robertson A D, Bruce P G. Overcharging manganese oxides: Extracting lithium beyond Mn4+. J Power Sources, 2005, 146: 275-280
[81]  73 Tran N, Croguennee L, Delmas C, et al. Mechanisms associated with the “Plateau” observed at high voltage for the overlithiated Lil.2(Ni0.425Mn0.425Co0.15)0.88O2 system. Chem Mater, 2008, 20: 4815-4825
[82]  74 La Mantia F, Rosciano F, Tran N, et al. Direct evidence of oxygen evolution from Lil+x(Nil/3Mnl/3Col/3)l-xO2 at high potentials. J Appl Electrochem, 2008, 38: 893-896
[83]  75 Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.O2. J Am Chem Soc, 2006, 128: 8694-8698
[84]  76 Li J, Klopsch R, Stan M C, et al. Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.O2 with improved rate capability. J Power Sources, 2011, 196: 4821-4825
[85]  77 Wu F, Lu H Q, Su Y F, et al. Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.O2 for lithium-ion batteries. J Appl Electrochem, 2010, 40: 783-789
[86]  78 Song C H, Stephan A M, Lee Y S, et al. Cycling performance of Li[Li2/10Ni1/10Co2/10Mn5/O2 synthesized by sol-gel route. Mater Chem Phys, 2007, 101: 63-68
[87]  80 Jiao L F, Zhang M, Yuan H T, et al. Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]Ox(x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources, 2007, 167: 178-184
[88]  81 Park J H, Lim J, Yoon J, et al. The effects of Mo doping on 0.3Li[Li0.33Mn0.O2·0.7[Ni0.5Co0.2Mn0.3]O2 cathode material. Dalton T, 2012, 41: 3053-3059
[89]  85 Kang Y J, Kim J H, Lee S W, et al. The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.O2 cathode material for lithium secondary battery. Electrochim Acta, 2005, 50: 4784-4791
[90]  86 Li G R, Feng X, Ding Y, et al. AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochim Acta, 2012, 78: 308-315
[91]  88 Ryu K S, Lee S H, Koo B K, et al. Effect of Co2(PO4)3 coating on Li[Co0.1Ni0.15Li0.2Mn0.O2 cathode material for lithium rechargeable batteries. J Power Sources, 2008, 184: 276-283
[92]  89 Wu C R, Fang X P, Guo X W, et al. Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. J Power Sources, 2013, 231: 44-49
[93]  90 Gao J, Kim J, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries. Electrochem Commun, 2009, 11: 84-86
[94]  91 Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.O2 cathode by blending with other lithium insertion hosts. J Power Sources, 2009, 191: 644-647
[95]  92 Wang Z Y, Liu E Z, He C N, et al. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sources, 2013, 236: 25-32
[96]  93 Gallagher K G, Kang S H, Park S U, et al. xLi2MnO3·(1-x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability. J Power Sources, 2011, 196: 9702-9707
[97]  94 Qiao Q Q, Zhang H Z, Li G R, et al. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as cathode for lithium-ion batteries. J Mater Chem A, 2013, 1: 5262-5268
[98]  95 Kim M G, Jo M, Hong Y S, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.O2 nanowires for high performance lithium battery cathode. Chem Commun, 2009, 2: 218-220
[99]  96 Park S H, Sun Y K. Synthesis and electrochemical properties of layered Li[Li0.15Ni(0.275-x/2)AlxMn(0.575-x/2)]O2 prepared by sol-gel method. J Power Sources, 2003, 119-121: 161-165
[100]  100 Mahantly D, Kalnaus S, Meisner R A, et al. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources, 2013, 229: 239-248

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133