1 Wilkinson B H, Algeo T J. Sedimentary carbonate record of calcium-magnesium cycling. Am J Sci, 1989, 289: 1158-1194
[2]
2 Hardie L A. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporates over the past 600 my. Geology, 1996, 24: 279-283
[3]
7 Ries J B. Effects of secular variation in seawater Mg/Ca ratio (calcite-aragonite seas) on CaCO3 sediment production by the calcareous algae Halimeda, Penicillus and Udotea—Evidence from recent experiments and the geological record. Terr Nova, 2009, 21: 323-339
[4]
8 Demicco R V, Lowenstein T K, Hardie L A, et al. Model of seawater composition for the Phanerozoic. Geology, 2005, 33: 877-880
[5]
9 Hasiuk F J, Lohmann K C. Application of calcite Mg partitioning functions to the reconstruction of paleocean Mg/Ca. Geochim Cosmochim Acta, 2010, 74: 6751-6763
[6]
10 Sandberg P A. An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature, 1983, 305: 19-22
[7]
11 Stanley S M, Hardie L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoclecol, 1999, 14: 3-19
[8]
12 Zimmermann H. Tertiary seawater chemistry—Implications from fluid inclusions in primary marine halite. Am J Sci, 2000, 300: 723-767
[9]
13 Lowenstein T K, Hardie L A, Timofeeff M N, et al. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 2003, 31: 857-860
[10]
14 Siemann M G. Extensive and rapid changes in seawater chemistry during the Phanerozoic: Evidence from Br contents in basal halite. Terr Nova, 2003, 15: 243-248
[11]
15 Nürnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim Cosmochim Acta, 1996, 60: 803-814
[12]
16 Nürnberg D, Bijma J, Hemleben C. Erratum: Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim Cosmochim Acta, 1996, 60: 2483-2484
[13]
17 Rosenthal Y, Boyle E A, Slowey N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography. Geochim Cosmochim Acta, 1997, 61: 3633-3643
[14]
18 Rosenthal Y, Lohman G P, Lohman K C, et al. Incorporation and preservation of Mg in Globigerinoides sacculifer: Implications for reconstructing the temperatures and 18O/16O of seawater. Paleoceanography, 2000, 15: 135-145
[15]
19 Hastings D W, Russell A D, Emerson S R. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy. Paleoceanography, 1998, 13: 161-169
[16]
20 Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium up take in planktonic foraminifera determined by live culturing. Geochim Cosmochim Acta, 1999, 63: 2369-2379
[17]
21 Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 2000, 287: 269-272
[18]
29 Freitas P S, Clarke L J, Kennedy H, et al. Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten Maximus. Geochem Cosmochim Acta, 2006, 70: 5119-5133
[19]
30 Smith A B. Stereom microstructure of the Echinoid test. Special Papers in Palaeontology 25. London: Palaeontological Association, 1980. 1-85
[20]
31 Ries J B. Review: Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences, 2010, 7: 2795-2849
[21]
32 Hasiuk F J, Lohmann K C. Mississippian paleocean chemistry from biotic and abiotic carbonate, muleshoe mound, Lake Valley Formation, New Mexico, USA. J Sediment Res, 2008, 78: 147-160
[22]
33 Dickson J A D. Transformation of Echinoid Mg calcite skeletons by heating. Geochim Cosmochim Acta, 2001, 65: 443-454
41 Ferguson J E, Henderson G M, Kucera M, et al. Systematic change of Forminiferal Mg/Ca ratios across a strong salinity gradient. Earth Planet Sci Lett, 2008, 265: 153-166
[25]
42 Broecker W S, Peng T H, Beng Z. Tracers in the Sea. Palisades, NY: Lamont-Doherty Geological Observatory, Columbia University, 1982. 1-690
[26]
44 Weber J N. Temperature dependence of magnesium in echinoid and asteroid skeletal calcite: A reinterpretation of its significance. J Geol, 1973, 81: 543-556
[27]
45 Morse J W, Bender M L. Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems. Chem Geol, 1990, 82: 265-277
[28]
47 Meyers W J. Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian) Sacramento Mountains, New Mexico. J Sediment Res, 1974, 44: 837-861
[29]
48 Ten H T, Heijnen W. Cathodoluminescence activation and zonation in carbonate rocks: An experimental approach. Geol Mijnbouw-N J G, 1985, 64: 297-310
[30]
50 Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, d13C and d18O evolution of Phanerozoic seawater. Chem Geol, 1999, 161: 59-88
[31]
51 Brand U, Logan A, Hiller N, et al. Geochemistry of modern brachiopods: Applications and implications for oceanography and paleoceanography. Chem Geol, 2003, 198: 305-334
[32]
52 Shields G A, Carden G A F, Veizer J, et al. Sr, C, O isotope chemistry of Ordovician brachiopods: A major isotopic event around the Middle-Late Ordovician transition. Geochim Cosmochim Acta, 2003, 61: 2005-2025
57 杜江辉, 黄宝琦. MIS 3期南海西部上层水体古海洋学变化. 科学通报, 2009, 54: 3753-3760
[36]
58 Trotter J A, Williams I S, Barnes C R, et al. Did cooling oceans trigger Ordivician biodiversification? Evidence from conodont thermometry. Science, 2008, 321: 550-554
[37]
59 Giles P S. Low-latitude Ordovician to Triassic brachiopod habitat temperatures (BHTs) determined from δ18O[brachiopod calcite]: A cold hard look at ice-house tropical oceans. Palaeogeogr Palaeoclimatol Palaeoclecol, 2012, 317-318: 134-152
[38]
60 Brennan S T, Lowenstein T K. The major-ion composition of Silurian seawater. Geochim Cosmochim Acta, 2002, 66: 2683-2700
[39]
61 Brennan S T, Lowenstein T K, Horita J. Seawater chemistry and the advent of biocalcification. Geology, 2004, 32: 473-476
[40]
64 Spencer R J, Hardie L A. Control of seawater composition by mixing of river waters and mid-ocean ridge hydrothermal brines. In: Spencer R J, Chou I-M, eds. Fluid-mineral Interactions: A tribute to HP Eugster. Geochemical Society Special Publication 19, 1990. 409-419
3 Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science, 2001, 294: 1086-1088
[43]
4 Horita J, Zimmermann H, Holland H D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates. Geochim Cosmochim Acta, 2002, 66: 3733-3756
[44]
5 Dickson J A D. Echinoderm skeletal preservation: Calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. J Sediment Res, 2004, 74: 355-365
[45]
6 Stanley S M. Effects of global seawater on biomineralization: Past, present, and future. Chem Rev, 2008, 108: 4483-4498
[46]
22 Lear C H, Rosenthal Y, Slowey N. Benthic foraminiferal Mg/Ca-paleothermometry: A revised core-up calibration. Geochim Cosmochim Acta, 2002, 66: 3375-3387
[47]
23 Dekens P S, Lea D W, Pak D K, et al. Core up calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation. Geochem Geophys Geosys, 2002, 3: 1022-1050
[48]
24 Huerta P, Cusack M, Jeffries T E, et al. High resolution distribution of magnesium and strontium and the evaluation of Mg/Ca thermometry in Recent brachiopod shells. Chem Geol, 2008, 247: 229-241
[49]
25 Mitsuguchi T, Matsumoto E, Abe O, et al. Mg/Ca thermometry in Coral skeletons. Science, 1996, 274: 961-963
27 Dickson J A D. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science, 2002, 298: 1222-1224
[52]
28 Putten E V, Keppens E, Baeyens W, et al. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus Edulis: Environmental and biological controls. Geochim Cosmochim Acta, 2000, 64: 997-1011
[53]
34 Dickson J A D. Diagenesis and crystal caskets: Echinoderm Mg calcite transformation, Dry Canyon, New Mexico, USA. J Sediment Res, 2001, 71: 764-777
[54]
35 Clausen S, Smith A B. Stem structure and evolution in the earliest Pelmatozoan Echinoderms. J Paleont, 2008, 82: 737-748
[55]
36 Ries J B. Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: A record of the oceanic Mg/Ca ratio over the Phanerozoic. Geology, 2004, 32: 981-984
[56]
37 Brand U, Azmy K, Tazawa J, et al. Hydrothermal diagenesis of Paleozoic seamount carbonate components. Chem Geol, 2010, 278: 173-185
39 Liu J B, Zhan R B, Dai X, et al. Demise of early Ordovician oolites in south China: Evidence for paleoceangraphic changes before the GOBE. In: Gutiérrez-Marco J C, Rábano I, García-Bellido, eds. Ordovician of the World. Cuadernos del Museo Geominero, 14. Instituto Geológico Y Minero de Espa?a, Madrid, 2011. 309-317
[59]
43 Dwyer G S, Cronin T M, Baker P A, et al. North Atlantic deepwater temperature change during late Pliocene and Late Quaternary climatic cycles. Science, 1995, 270: 1347-1351
[60]
46 Hemming N G, Meyers W J, Grams J C. Cathodoluminescence in diagenetic calcites: The roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements. J Sediment Res, 1989, 59: 404-411
[61]
49 Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system-1: Trace elements. J Sediment Res, 1980, 50: 1219-1236
55 Medina-Elizalde M, Lea D W, Fantle M S. Implications of seawater Mg/Ca variability for Pilo-Pleistocene tropical climate reconstruction. Earth Planet Sci Lett, 2008, 269: 585-595
[64]
62 Lowenstein T K, Timofeeff M N, Kovalevych V M, et al. The major-ion composition of Permian seawater. Geochim Cosmochim Acta, 2005, 69: 1701-1719
[65]
63 Timofeeff M N, Lowenstein T K, Silva M A M, et al. Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites. Geochim Cosmochim Acta, 2006, 70: 1977-1994
[66]
65 Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci, 1987, 287: 401-428
[67]
66 Holland H D, Horita J, Seyfried W E. On the secular variations in the composition of Phanerozoic marine potash evaporites. Geology, 1996, 24: 993-996
[68]
67 Holland H D, Zimmermann H. The dolomite problem revisited. Int Geol Rev, 2000, 42: 481-490
[69]
68 Holland H D. Sea level, sediments and the composition of seawater. Am J Sci, 2005, 305: 220-239
[70]
69 Azmy K, Lavoie D, Knight I, et al. Dolomitization of the Lower Ordovician Aguathuna Formation carbonates, Port au Port Peninsula, Western Newfoundland, Canada: Implications for a hydrocarbon reservoir. Can J Earth Sci, 2008, 45: 795-813
[71]
70 Kanygin A, Dronov A, Timokhin A, et al. Depositional sequences and palaeoceanographic change in the Ordovician of the Siberian craton. Palaeogeogr Palaeoclimatol Palaeoclecol, 2010, 296: 285-296
[72]
71 Thompson C K, Kah L C, Astini R, et al. Bentonite geochronology, marine geochemistry, and the Great Ordovician Biodiversification Event (GOBE). Palaeogeogr Palaeoclimatol Palaeoclecol, 2012, 321-322: 88-101