4 Settefrati A, Dehmas M, Geandier G, et al. Precipitation sequences in beta metastable phase of Ti-5553 alloy during ageing. In: Zhou L, Chang H, Lu Y F, et al., eds. Proceeding of the 12th World Conference on Titanium (Ti-2011), 2011 Jun 19-24, Beijing, China. Beijing: Science Press, 2012. 468-472
[3]
5 Bruneseaux F, Geandier G, Gautier E, et al. In situ characterization of the transformation sequences of Ti17 alloy by high energy X-ray diffraction: Influence of the thermal path. In: Niinomi M, Akiyama S, Hagiwara, et al., eds. Proceedings of the 11th World Conference on Titanium (JIMIC5) Ti-2007 Science and Technology, 2007 Jun 3-7, Kyoto, Japan. Sendai: The Japan Institute of Metals, 2007. 563-566
[4]
6 Ohmori Y, Ogo T, Nakai K, et al. Effects of ω-phase precipitation on β→α, α" transformations in a metastable β titanium alloy. Mater Sci Eng A, 2001, 312: 182-188
[5]
10 Gautier E, Settefrati A, Bruneseaux F, et al. Isothermal α" formation in β metastable titanium alloys. J Alloy Compd, in press
[6]
17 Napoli P D, Appolaire B, Gautier E, et al. Modeling of β→α transformation in complex titanium alloys. In: Zhou L, Chang H, Lu Y F, et al., eds. Proceeding of the 12th World Conference on Titanium (Ti-2011), 2011 Jun 19-24, Beijing, China. Beijing: Science Press, 2012. 628-631
[7]
18 Teixeira J D C, Appolaire B, Gautier E, et al. Modeling of the effect of the β phase deformation on the α phase precipitation in near-β titanium alloys. Acta Mater, 2006, 54: 4261-4271
[8]
19 Malinov S, Sha W. Application of artificial neural networks for modelling correlations in titanium alloys. Mater Sci Eng A, 2004, 365: 202-211
[9]
2 Gloriant T, Texier G, Sun F, et al. Characterization of nanophase precipitation in a metastable β titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction. Scripta Mater, 2008, 58: 271-274
[10]
3 Bruneseaux F, Aeby-Gautier E, Geandier G, et al. In situ characterizations of phase transformations kinetics in the Ti17 titanium alloy by electrical resistivity and high temperature synchrotron X-ray diffraction. Mater Sci Eng A, 2008, 476: 60-68
[11]
7 Prima F, Vermaut P, Texier G, et al. Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy. Scripta Mater, 2006, 54: 645-648
[12]
8 Sukedai E, Kitano Y, Ohnishi A. Investigation of initial structures of aged ω-phase crystals in β-titanium alloys using high resolution electron microscopy. Micron, 1997, 28: 269-277
[13]
9 Chang H, Gautier E, Bruneseaux F, et al. Isothermal phase transformation kinetics of β→α+β in Ti-B19 alloy (in Chinese). Rare Metal Mater Eng, 2006, 35: 1696-1699
[14]
11 Gautier E, Bruneseaux F, Da Costa Teixeira J, et al. Microstructural formation in Ti alloys: In-situ characterization of phase transformation kinetics. JOM, 2007: 54-58
[15]
12 Malinov S, Markovsky P, Sha W. Resistivity study and computer modeling of the isothermal transformation kinetics of Ti-8Al-1Mo-1V alloy. J Alloy Compd, 2002, 333: 122-132
[16]
13 Malinov S, Markovsky P, Sha W, et al. Resistivity study and computer modeling of the isothermal transformation kinetics of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si alloy. J Alloy Compd, 2001, 314: 181-192
[17]
14 Malinov S, Sha W, Guo Z, et al. Synchrotron X-ray diffraction study of the phase transformations in titanium alloys. Mater Charact, 2002, 48: 279-295
[18]
15 Malinov S, Sha W, Markovsky P. Experimental study and computer modeling of the β→α+β phase transformation in b21s alloy at isothermal conditions. J Alloy Compd, 2003, 348: 110-118
[19]
16 Appolaire B, Hericher L, Gautier E. Modeling of phase transformation kinetics in Ti alloys—Isothermal treatments. Acta Mater, 2005, 53: 3001-3011
[20]
20 Teixeira J D C, Appolaire B, Gautier E, et al. Prediction of the kinetics of the phase transformations and the associated microstructure during continuous cooling in the Ti17. Mater Sci Eng A, 2007, 448: 135-145